ANNAMALAI UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING '

B.E (EEE)

V -SEMESTER

l MICROPROCESSOR AND MICROCONTROLLER LAB l

N /

To develop the Department into a “Centre of Excellence” with a perspective to provide
quality education and skill-based training with state-of-the-art technologies to the students,

thereby enabling them to become achievers and contributors to the industry, society and

DEPARTMENT OF ELECTRICAL ENGINEERING

VISION

nation together with a sense of commitment to the profession.

M1:

M2:

M3:

M4:

Mb5:

MISSION

To impart quality education in tune with emerging technological developments in

the field of Electrical and Electronics Engineering.

To provide practical hands-on-training with a view to understand the theoretical

concepts and latest technological developments.
To produce employable and self-employable graduates.

To nurture the personality traits among the students in different dimensions
emphasizing the ethical values and to address the diversified societal needs of the

Nation

To create futuristic ambience with the state-of-the-art facilities for pursuing

research.

EECP 507 MICROPROCESSOR AND
MICROCONTROLLER LAB

EXP.NO | DATE EXPERIMENT NAME MARKS | REMARKS
Study of 8085 Microprocessor
1 a) Finding out the largest and smallest
number
b) Sorting an array
Study of 8051 Microcontroller
2 a) Arithmetic Operations
b) Code Conversion
Study of 8097 Microcontroller
3 a)Arithmetic Operations
b)Logical Operations
4 Study of Programmable Peripheral Interface
8255
5 Serial Data Communication using USART
8251 and Timer 8253
6 Seven Segment LED Display using 8051
Microcontroller
7 Stepper Motor Control using 8051
Microcontroller
8 Study of Keyboard Display Interface 8279
using 8051 Microcontroller
9 Applications of 8097 Microcontroller
a) DAC b) ADC c) PWM Generation
10 Serial Data Communication Between Two

8051 Kits

EX. No: DATE:

STUDY OF 8085 MICROPROCESSOR
Aim
To study about the 8085 microprocessor and to execute the following programs on 8085

microprocessor Kit.

Q) To find the largest and smallest number in an array.
(i) To arrange the numbers in ascending and descending order.

Theory

Intel 8085 is an 8-bit microprocessor. It is a 40 pin IC package. It uses a single +5v power
supply. Its clock speed is about 3 MHz.

8085 System Bus

A typical microprocessor communicates with memory and other devices (input and output) using
three busses: Address Bus, Data Bus and Control Bus.

Arithmetic Logic Unit (ALU)

ALU performs the actual numerical and logic operation such as ‘add’, ‘subtract’, ‘“AND’, ‘OR’
etc.

Registers

The 8085 microprocessor includes six registers, one accumulator, and one flag register. In
addition, it has two 16-bit registers, the stack pointer and the program counter.

Instruction Register/Decoder

Latest instruction is sent to Instruction register from memory, prior to execution. So it is the
temporary store for the current instruction of a program. Decoder, then decodes or interprets the
instruction.

Timing and control unit

This unit synchronizes all the microprocessor operations with the clock and generates the
control signals necessary for communication between the microprocessor and peripherals.

Interrupt control
8085 microprocessor has 5 interrupts used to interrupt a program execution. They are

INTR, RST5.5, RST6.5, RST7.5, TRAP. TRAP is a non maskable interrupt and other interrupts
are maskable.

Serial 1/0O control
8085 microprocessor has 2 signals SID and SOD to implement the serial transmission.

Q) SID-Serial Input Data line SOD-Serial Output Data line

Architecture details of 8085 Microprocessor

{

1

S0

l

[HTAz RSTE.S TRAP

|r-1*m I Esls.sl ESI?.E l

o)) Inte | 8085 Microarchitecturs

I

Interrupt Cantral

Serial D
Contral

3

B Bitinternal Data Bus

|

$

Accumulatan Temp. -
(g Bit) Register Instruction
Register
(8 Bit)
B Reg. € Reg.
" EEL EEL
Flag Eelmster l — —
(8 Bit) | _men BB
Instruction E H Reg. L Reg. BEE
Decoder and = BEN BB
i v Stack Po nter
Machine o P
C}l'ElE Pragram Counter
Encoding A6 EY
IncrementenDecrementer
Auldress Litch
Address Bus Low).
Address Bus High). BEE
BEL
Multiplexer
L RESET TI:;:E - Eu;::;lms CONTROL Address Buffer | | DatalAddress Buf
#1==* GEN —_—— p . - " ress Buffer) ress Buffe
T h
i k&
CLK OUT RESET oUT| HLDA S0 51 2 [g
RESET IN# HOLD =| reapy |2 |3 2
R Y Wl S | e e Rl
| Add .-
! Decaoder 1 rE:: i
! ALE L atc i
]
T |
i MEMW# § 10W# BAL _
| MEMR# IOR# ' AbaT - DI-DT

Address Bus Address Bus Data Bus

Architecture of 8051 Microcontroller

Program 1

To find the largest number in an array.

ADDRESS | LABEL | OPCODE | MNEMONICS COMMENTS
4100 MVI A,00 Move the Accumulator with the smallest 8 bit
number 00
4102 MVI B,05 Initialize the B register as counter with the
array size
4104 LXI H, 4200 Load HL register pair with the memory address
4200
4107 LOOP1 CMP M Compare the content of memory with
Accumulator
4108 JNC LOOP Jump on no carry to the memory address
specified by the label LOOP
410B MOV AM Move the bigger number available in memory
to Accumulator
410C LOOP INXH Increment HL register pair
410D DCR B Decrement B register
410E JNZ LOOP1 If the B register is not equal to zero, then jump
to the memory address specified by the label
LOOP1
4111 STA 4250 Store the Accumulator content (i.e. the largest
number) in the memory address 4250
4114 HLT Halt
Data Result
4200 4250
4201
4202
4203
4204

Flowchart- To find the largest number in an array.

Start

4

Load Accumulator with the Minimum 8-bit number 00

v

Initialise a counter B with the number of elements in an array

v

Initialize HL register pair with the staring memory address
4200, where the elements of an array are stored

<

A

Compare the content of memory with Accumulator

Is carry flag set

Memory content is larger than accumulator.
So the Memory content is copied to
Accumulator

<

¥

Increment the memory address & Decrement
the counter B

No
Is B=0

Yes

The Accumulator content is the Largest
number & is copied to the memory location
4250

4

Stop

10

Program 2

To find the smallest number in an array.

11

ADDRESS | LABEL | OPCODE | MNEMONICS COMMENTS
4100 MVI AFF Move the Accumulator with the largest 8 bit
number FF
4102 MVI B,05 Initialize the B register as counter with the array
size
4104 LXI H, 4200 Load HL register pair with the memory address
4200
4107 LOOP1 CMP M Compare the content of memory with
Accumulator
4108 JC LOOP Jump on carry to the memory address specified
by the label LOOP
410B MOV AM Move the smaller number available in memory
to Accumulator
410C LOOP INXH Increment HL register pair
410D DCR B Decrement B register
410E JNZ LOOP1 If the B register is not equal to zero, then jump
to the memory address specified by the label
LOOP1
4111 STA 4250 Store the Accumulator content (i.e. the smallest
number) in the memory address 4250
4114 HLT Halt
Data Result
4200 4250
4201
4202
4203
4204

Flowchart-To find the smallest number in an array

Start

A

Load Accumulator with the Maximum 8-bit number FF

v

Initialise a counter B with the number of elements in an array

v

Initialize HL register pair with the staring memory address
4200, where the elements of an array are stored

@

Compare the content of memory with Accumulator

Is carry flag set

Memory content is smaller than
accumulator. So the Memory content is
copied to Accumulator

<4

A

Increment the memory address & Decrement
the counter B

No

Is B=0

Yes

The Accumulator content is the Smallest
number & is copied to the memory location
4250

12

Program 3

To sort an array of numbers in ascending order.

13

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS
4100 MVI C,05 Initialize the C register as counter with
the array size
4102 LXI D, 4301 Load DE register pair with the memory
address 4301
4105 LOOP2 MVI B,05 Initialize the B register as counter with
the number of compare operations
4107 LXI H, 4201 Load HL register pair with the memory
address 4201
410A MVI AFF Move the Accumulator with the largest 8
bit number FF
410C LOOP1 CMP M Compare the content of memory with
Accumulator
410D JC LOOP Jump on carry to the memory address
specified by the label LOOP
4110 MOV AM Move the smaller number available in
memory to Accumulator
4111 SHLD 4250 Store HL register pair in 4250 & 4251
4114 LOOP INXH Increment HL register pair
4115 DCR B Decrement B register
4116 JNZ LOOP1 If the B register is not equal to zero, then
jump to the memory address specified by
the label LOOP1
4119 STAXD Store the Accumulator content (i.e. the
smallest number) in the memory address
4250
411A INX D Increment HL register pair
411B LHLD 4250 Load HL register pair from 4250 & 4251

Flowchart -To sort an array of numbers in ascending order.

‘ Initialise a counter C with the number of elements in an array ‘

v

‘ Initialize DE register pair with the Memory address 4301 to store the results ‘

v

Initialise B register as counter with the number of compare operations

l

Initialize HL register pair with Memory address 4201where the elements of an array are stored

<

14

o
Load Accumulator with the Maximum 8-bit number FF
\

v

Compare the memory content with Accumulator

Yes

Is carry flag set

Memory content is copied to Accumulator

Store the content of HL register pair in the memory locations 4250 & 4251

le
&

Increment the memory address & Decrement the counter B

No

Is B=0

Yes

Store the Accumulator content to the memory location specified by DE register pair

!

Increment DE register pair

}

Load HL register pair from the memory locations 4250 & 4251

l

Move FF to the memory location specified by HL register pair

|

Decrement the counter C

Is C=0

Yes

15

411E

MVI M, FF

Move FF to memory location where the
smallest number is located

4120

DCRC

Decrement C register

4121

JNZ LOOP2

If the C register is not equal to zero, then
jump to the memory address specified by
the label LOOP2

4124

HLT

Halt

Data

4201

4202

4203

4204

4205

Result

4301

4302

4303

4304

4305

Flowchart- Sorting an array of numbers in descending order.

‘ Initialise a counter C with the number of elements in an array ‘

v

‘ Initialize DE register pair with the Memory address 4301 to store the results ‘

v

Initialise B register as counter with the number of compare operations

.

‘ Initialize HL register pair with Memory address 4201, where the elements of an array are stored ‘

|

16

I
Load Accumulator with the Minimum 8-bit number 00

Is carry flag set

Yes

‘ Memory content is copied to Accumulator ‘

‘ Store the content of HL register pair in the memory locations 4250 & 4251 ‘

le
=

‘ Increment the memory address & Decrement the counter B ‘

No

Is B=0

Yes

Store the Accumulator content to the memory location specified by DE register pair

!

Increment DE register pair

l

Load HL register pair from the memory locations 4250 & 4251

l

Move 00 to the memory location specified by HL register pair

!

Decrement the counter C

No

Is C=0

Program 4

To sort an array of numbers in descending order.

17

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS
4100 MVI C,05 Initialize the C register as counter with
the array size
4102 LXI D, 4301 Load DE register pair with the memory
address 4301
4105 LOOP2: MVI B,05 Initialize the B register as counter with
the number of compare operations
4107 LXI H, 4201 Load HL register pair with the memory
address 4201
410A MVI A,00 Move the Accumulator with the smallest
8 bit number 00
410C LOOP1: CMP M Compare the content of memory with
Accumulator
410D JNC LOOP Jump on no carry to the memory address
specified by the label LOOP
4110 MOV A M Move the smaller number available in
memory to Accumulator
4111 SHLD 4250 Store HL register pair in 4250 & 4251
4114 LOOP: INXH Increment HL register pair
4115 DCR B Decrement B register
4116 JNZ LOOP1 If the B register is not equal to zero, then
jump to the memory address specified by
the label LOOP1
4119 STAX D Store the Accumulator content (i.e. the
smallest number) in the memory address
4250
411A INX D Increment HL register pair
411B LHLD 4250 Load HL register pair from 4250 & 4251

18

19

411E

MVI M, 00

Move 00 to memory location where the
largest number is located

4120

DCRC

Decrement C register

4121

JNZ LOOP2

If the C register is not equal to zero, then
jump to the memory address specified by
the label LOOP2

4124

HLT

Halt

Data

4201

4202

4203

4204

4205

Result

4301

4302

4303

4304

4305

Result

The above programs were executed and their results are verified using 8085 microprocessor.

20

21

EX.NO: DATE:
STUDY OF MICROCONTROLLER-8051

AlIM:
To perform various arithmetic operations using 8051 microcontroller.

THEORY:

It is 8-bit microcontroller, means MC 8051 can Read, Write and Process 8 bit data. This
is mostly used microcontroller in the robotics, home appliances like mp3 player, washing
machines, electronic iron and industries. Mostly used blocks in the architecture of 8051 are as
follows:

MC 8051 has 128 byte Random Access memory for data storage. Random access
memory is non volatile memory. During execution for storing the data the RAM is used. RAM
consists of the register banks, stack for temporary data storage. It also consists of some special
function register (SFR) which are used for some specific purpose like timer, input output ports
etc. Normally microcontroller has 256 byte RAM in which 128 byte is used for user space which
is normally Register banks and stack. But other 128 byte RAM which consists of SFRs.

In 8051, 4KB read only memory (ROM) is available for program storage. This is used
for permanent data storage. This is volatile memory; the data saved in this memory does not
disappear after power failure.

Timers and Counters

Timer means which can give the delay of particular time between some events. For
example on or off the lights after every 2 sec. This delay can be provided through some
assembly program but in microcontroller two hardware pins are available for delay generation.

* In MC8051, two timer pins are available TO and T1, by these timers we can give the delay of
particular time if we use these in timer mode and can count external pulses at these pins if we
use these pins in counter mode.

* 16 bits timers are available. Means we can generate delay between 0000H to FFFFH.
 Two special function registers are available.

* TMOD, TCON registers are used for controlling timer operation.

Serial Port

* There are two pins available for serial communication TXD and RXD. Normally TXD is used
for transmitting serial data which is in SBUF register, RXD is used for receiving the serial data.
SCON register is used for controlling the operation.

Oscillator

* It is used for providing the clock to MC8051 which decides the speed or baud rate of MC. The
use of crystal which frequency vary from 4MHz to 30 MHz. There are four input output ports
available PO, P1, P2, P3.

POO=PO T P2.0-p27

e - === === === =1
Yoo I
Ve PORT O PORT 2

DRIVERS DRIVERS |
=1 |
! T frqt |
I . |
[+4
Oy
‘ 3 E w; ir |
i =8 |
a0 PORT © PORT 2 .]
| S LATCH LATCH CLL 1
l _ £ |
i |
I i S~ |
i |
| PROGRAM I
apbr. [
| REGISTER |
| STACK I
POINTER
= K |
i
V] aecisten L
i " |
I - INCREMENTER @ 1
I TIMERS |
P.C.A
I |
I PROGRAM I
£ £ COUNTER
1 - |
PSEN 4 .
wosssciinass TEM | M =
ALE/FRDE +— ;‘N'[,“ GE == !
RST ——pp] CONTROL £ 1 n
| = |
I h |
| PORT 1 PORT 3 I
LATCH LATGH
I |
| i i !
I |
| PORT 1 S— PORT 3 I
08¢, DRIVERS [\ e DRIVERS
I |
[T N . - - ol

KTAL1 ATALZ

| E P1.O=F1.7 P3.0=-F3.7

23

Interrupts

* Interrupts are defined as requests because they can be refused (masked) if they are not used,
that is when an interrupt is acknowledged. A special set of events or routines are followed to
handle the interrupts. These special routines are known as interrupt handler or interrupt service
routines (ISR). These are located at a special location in memory. INTO and INT1 are the pins
for external interrupts.

8051 Flag Bits and PSW Register
— Used to indicate the Arithmetic condition of ACC.

— Flag register in 8051 is called as program status word (PSW). This special function register
PSW is also bit addressable and 8 bit wide means each bit can be set or reset independently.

There are four flags in 8051

* Parity flag * overflow flag * Auxiliary carry « carry flag
— Four Register Banks

« RS1(PSWO0.4) RSO(PSWO0.3)
Register Bank Select

0 0 BankO

0 1 Bank1

1 0 Bank?2

11 Bank3

» FO — user definable bit
Stack is last in first out (LIFO)
DPTR

It is a 16 bit register, it is divided into two parts DPH and DPL. DPH for Higher order 8 bits,
DPL for lower order 8 bits. DPTR, DPH, DPL these all are SFRs in 8051.

PROCEDURE:

1. Enter Opcode and data in trainer.
2. Execute the program.
3. Change the data and see that correct results are obtained.

16 Bit Addition

< Start)
N

(A)= MSB of Ist OPERAND

(=

ADD (A) WITH MSB OF 2" OPERAND

(=

STORE MSB OF RESULT IN MEMORY

(=

(A)= LSB of Ist OPERAND

(=

ADD (A) WITH LSB OF 2" OPERAND

.
\]7

STORE LSB OF RESULT IN MEMORY

24

25

A) ARITHMETIC OPERATIONS
PROGRAM 1: 16 Bit Addition

OBJECTIVE:
To perform 16 bit addition of two 16-bit data using immediate addressing mode and store
the result in memory.

THEORY:

As there is only one 16-bit register in 8051. 16-bit addition is performed by using ADDC
instruction twice, i.e. addition LSD first and MSD next. This program adds the 16bit data 1234
with 5678 and store the result in 4150 and 4151 using immediate addressing.

Program1:16 Bit Addition

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

8100 CLRC Clear cy flag

8101 MOV A#DATA1 Move Data 1 to A reg

8103 ADD A, #DATA2 Add Data 2 with A Reg

8105 MOVDPTR,#8150 Move 8150 to DPTR

8108 MOVX@DPTR, A Move LSB Result from
accumulator to DPTR

8109 INC DPTR Increment DPTR

810A MOV A# DATA M1 | Move MSB Data 1 to A reg

810C ADDC# DATA M2 | Add MSB Data 2 with A Reg
and CY flag.

810E MOVX@DPTR,A Move MSB Result from
accumulator to DPTR

810F HERE SIMP HERE Short Jump

DATA:

8102: 34, 8104:78, 810B:12, 810D: 56

RESULT:
8150: AC; 8151:68

PROGRAM 2: 8 BIT SUBTRACTION
OBJECTIVE:

To perform subtraction of two 8 bit data using immediate addressing mode and store the
result in memory.

8 BIT SUBTRACTION

C D

9]
-+

tar

(=

‘ CLEAR CARRY FLAG ‘

(=

‘ GET 1% OPERAND IN A ‘

(=

‘ SUBTRACT 2" OPERAND FROM A ‘

(=

‘ STORE RESULT IN MEMORY ‘

0
©)

T

C P

8 BIT MULTIPLICATION

()]
~+
Q
=
~+

C)

(=

‘ GET MU

=

TIPLIER IN A ‘

(=

‘ GET MULTIPLICAND IN B ‘

(=

‘ MULTIPLY A WITH B ‘

(=

‘ STORE RESULT IN MEMORY ‘

0
@)

T

C P)

26

27

THEORY:
Using the accumulator, subtraction is performed and results are stored. Immediate
addressing is employed. The SUBB instruction write the result in the ACC.

Program 2: 8 Bit Subtraction

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

8100 CLRC Clear cy flag

8101 MOV A#DATAL Move Data 1 to A reg

8103 SUBB A #DATA2 SUB Data 2 with A Reg.

8105 MOV DPTR, #8500 | Move 8500 to DPTR

8108 MOVX @DPTR, A | Move Result from
accumulator to DPTR

8109 HERE SIMP HERE Short Jump

DATA:

8102: 20, 8104:10

RESULT:

8500: 10

PROGRAM 3: 8 BIT MULTIPLICATION

OBJECTIVE:
To obtain the product of two 8bit data using immediate addressing and store the result in
memory.

THEORY:

The 8051 microcontroller has MUL instruction unlike many other microprocessors. The
MUL instruction multiplies the unsigned integers in A and B. The low order byte of the product
is left in A and higher byte in B. If the product is greater than 255, the overflow flag is set,

otherwise it is cleared. Carry flag is always cleared.

Program3: 8 Bit Multiplication

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

8100 MOV A#DATAL Move Data 1 to A reg
8102 MOV B #DATA2 Move Data 2 to B reg
8105 MUL AB MUL B Reg. with A Reg.
8106 MOV DPTR, #8500 | Move 8500 to DPTR

8

BIT DIVISION

C

Start >

GET DIVIDEND IN A

GET DIVISOR IN B

DIVIDE ABY B

STORE LSB and MSB OF THE RESULT IN MEMORY

C

STOP)

28

29

8109 MOVX @DPTR,A Move Result from
accumulator to DPTR

810A INC DPTR Increment DPTR

810B MOV A,B Move B Reg. Result to A Reg.

810D MOVX @DPTR, A | Move Result from
accumulator to DPTR

810E HERE SIMP HERE Short Jump

DATA:

8101: OA, 8105:07

RESULT:
8500: 46; 8501:00

PROGRAM 4: 8 BIT DIVISION

OBJECTIVE:
To divide a 8 bit number by another 8bit number and to store the quotient and remainder
in memory.

THEORY:

The 8051 microcontroller has DIV instruction unlike any other 8bit microprocessors DIV
instruction divides the unsigned 8bit integer in A by that in B. The ACC receives the integer part
of the quotient and B receives the integer remainder. The carry and overflow flags will be
cleared.

Program 4: 8 Bit Division

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS
8100 MOV A#DATAL Move Data 1 to A reg
8102 MOV B, #DATAZ2 Move Data 2 to B reg
8105 DIV AB DIV A Reg. by B Reg.
8106 MOV DPTR, #8500 | Move 8500 to DPTR
8109 MOVX @DPTR,A Move Result from
accumulator to DPTR
810A INC DPTR Increment DPTR
810B MOV A,B Move B Reg. Result to A
Reg.
810D MOVX @DPTR, A | Move Result from
accumulator to DPTR
810E HERE SIMP HERE Short Jump

30

31

DATA:
8101: 65, 8104:0A

RESULT:
8500: 0C (Quotient); 8501:05(Remainder)

RESULT:

Thus the various arithmetic operations were performed and verified using 8051
Microcontroller.

ASCII TO DECIMAL CONVERSION

Start

GET DATAIN A

l

(A)= (A)-30H

YES NO

RESULT= FFH

RESULT =(A)

STOP

bo®

33

B) CODE CONVERSION USING 8051 MICROCONTROLLER

AlM:
To write and execute a few code conversion programs using 8051 microcontroller.

THEORY:

Code conversion is very essential in micro computing because many peripherals that are
to be dealt which may provide data in ASCII, BCD or various special codes. Each one of the
special codes which is different from the binary concept of 8051 must be converted first to
binary, for the microprocessor to process it. After processing, the binary form must again be
converted back to the special code of that peripheral, before transferring it to the peripheral.

PROGRAM 1: ASCII TO DECIMAL CONVERSION

OBJECTIVE: To convert the ASCIlI number in the accumulator to its equivalent decimal
number.

THEORY': Conversion of an ASCII number t decimal is very simple because all the decimal
numbers form a sequence in ASCIIl. Any ASCII number can be converted to decimal just by
subtracting 30 from it.

Program 1: ASCII TO DECIMAL CONVERSION

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

8100 MOV DPTR, #8500 | Move 8500 to DPTR

8103 MOV A, #DATA Move data to A reg.

8105 CLRC Clear CY flag

8106 SUBB A, #30 Sub 30 from A reg.

8108 CLRC Clear CY flag

8109 SUBB A #0A Sub 0A from A reg. with
borrow

810B JC STR Jump carry to STR

810D MOV A #0FF Move FF to A reg.

810F SIMP L1 SIMP to L1

8111 STR: ADD A, #0A Add OA with A reg.

8113 L1: MOVX @DPTR,A | Move Result from
accumulator to DPTR

8114 HLT: SIMP HLT Short Jump

Data: 35 Data: 3B

Result [8500]: Result [8500]:

HEX TO DECIMAL CONVERSION

< Start >

l

GET THE HEX DATA IN A

i

LOAD B WITH 100 D

l

DIVIDE ABY B

| J
STORE (A) i.e. No of 100s

y
LOAD B WITH 10 D

v

DIVIDEABY 10D

'

STORE (A) AS NO OF TENS

'

STORE (B) AS NO OF UNITS

:

(stop)

34

PROGRAM 2: HEX TO DECIMAL CONVERSION

OBJECTIVE: To obtain the decimal equivalent of an 8 bit hex number stored in memory.

35

THEORY': The Hex number is converted to its equivalent decimal number. The Hex number to
be converted is brought to the accumulator and is divided by 100 D to find the number of
hundreds in it. DIV instruction of 8051 is used in this program. The remainder is divided by 10
D to count the number of tens in it. Finally the remainder obtained from the above division gives
the number of units in the given Hex number. The result is stored in memory in the unpacked

form.

Program 2: HEX TO DECIMAL CONVERSION

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

8100 MOV DPTR, #8500 | Move 8500 to DPTR

8103 MOVX A,@DPTR Move data to A reg.

8104 MOV B, #64 Move 64 to B reg.

8107 DIV AB DivAbyB

8108 MOV DPTR, #8501 | Move 8501 to DPTR

810B MOVX @DPTR,A | Move data to A reg

810C MOV AB Move B reg. to A reg.

810E MOV B, #0A Move OA to B reg.

8111 DIV AB DivAbyB

8112 INC DPTR Increment DPTR

8113 MOVX @DPTR,A | Move data to A reg

8114 INC DPTR Increment DPTR

8115 MOV A,B Move B reg. to A reg

4118 MOVX @DPTR,A Move Result from accumulator
to DPTR

4119 HLT: SIMP HLT Short Jump

Data: [8500]: OF
Result [8501]:
[8502]:

DECIMAL TO HEX CONVERSION

C

Start

)

l

GET MSD OF DATA IN A

i

MULTIPLY A WITH OAH

.

ADD IT WITH LSD OF DATA

| /

STORE HEX DATA IN MEMORY

Y

C

STOP

)

36

PROGRAM 3: DECIMAL TO HEX CONVERSION

37

OBJECTIVE: To convert BCD digits in memory to the equivalent hex number.

THEORY': Considering that out f the two unpacked BCD digits at 8500 and 8501, the digit at
8500 is the MSD, the logic is to multiply this by OA (10D) and then add the LSD at 8501 to the

product.

Program 3: DECIMALTO HEX CONVERSION

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS
8100 MOV DPTR, #8500 | Move 8500 to DPTR
8103 MOVX A,@DPTR Move data to A reg.
8104 MOV B,#0AH Move OA to B reg.
8107 MUL AB MUL A with B reg.
8108 MOV B,A Move A reg. B reg.
810A INC DPTR Increment DPTR
810B MOVX A,@DPTR Move DPTR content to A reg.
810C ADD A B Add A reg. and B reg. content
810E INC DPTR Increment DPTR
810F MOVX @DPTR,A Move Result from accumulator
to DPTR
8110 HLT: SIMP HLT Short Jump
Data [8500]:03
[8501]:06

Result [8502]:

RESULT:

Thus the above programs are loaded and the results are verified.

|Vref

| AnGnd Freguency Ref.
l l CPLU L] lock ||
Gen.] kh'{.‘tE
& 10 Converter ALl on-Chip
232 Inyte Interrupt EPR M
| + + Caontroller
Fegizt
T FAIstER) Cortral
Mictocoded Signals
SIH | SEOUENCEr
Memaory
T Controller I Port 3
8 a |20 Bus
MUK | | =0
Yo, Part 4
d
]]]]
T2 Capt
watchaogl | | senal E‘gﬁ
Timer o |eme— Gen Timer 2
Port 0 : Timer 1
Hold P T——
¢ T T - Hida »
15 Birexy -
PWM L el Port 2 Multiplexer Speed
1fo Part 1
210 M rato Poi 2 Afternate Function
° Hs| H50 Pott 1

Architecture of 8097 Microcontroller

38

39

EX.NO: DATE:
STUDY OF 8097 MICROCONTROLLER
AIM
To perform various arithmetic and logical operations using 8097 microcontroller.
THEORY

Micro controllers are designed as a single chip, which typically includes a
microprocessor, 64 bytes of Read/write memory, 8 Kbytes of ROM and several signal lines to
connect 1/O s. These are complete microcomputers on a chip also known as microcontroller. The
features of 8097 are

1. A 8097 is a 16 bit microcontroller.

2. The 8097 is designed to use in applications which require high speed calculations and
fast 1/0 operations.

3. The high speed 1/0 section of an 8097 includes a 16 bit timer, a 16 bit counter, a 4
input programmable edge detector, 4 software timers and a 6 output programmable
event generator.

4. The 8097 has 8 multiplexed input analog to digital converter with 10 bit resolution. It
can fully run under interrupt control.

5. Its programmable PWM output signals can be used as control signals to drive a motor

and for any other applications.

Its several port has several modes of operation with programmable baud rates.

It supports register to register architecture which increases processing speed.

It has 100 instructions which can operate on bit, byte, word, double words.

It consists of a complete set of 16-bit arithmetic instructions including multiply and

divide instructions.

10. Logical and arithmetic instructions are available for both byte and word operations.

11. The bit operations are possible and these can be performed on any bit in the register
file or in the special function register.

The major components of the CPU on the 8097 are register file and the register
ALU(RALU). The CPU register file has 256 bytes of memory. Out of 256 locations the first 24
memory locations 00H to 17H are the special function registers (SFRs). The SFRs are used to
control the on chip 1/O section. The upper 16 bytes of RAM is called power down RAM because
these locations receive their power from the Vpp pin in the power down mode. RALU contains a
17 bit ALU, the program status word (PSW), the program counter (PC), a loop counter and three
temporary registers.

The 8097 has two 16 bit timers. Timer 1 is used to synchronize events to real time, while
timer 2 can be clocked externally and synchronizes events to external occurrences.

The high speed input unit (HIS), can be used to record the time at which an event occurs
with respect to timer 1. The high speed output unit (HSO) is used to trigger events at specific
times with minimal CPU overhead. These events include: starting an A to D conversion,
resetting timer 2 setting 4 software flags and switching up to 6 output lines. The HSO can be

40

41

programmed to generate interrupts at preset timers. The A/D converter on the 8097 provides 8-
input channels with a 10-bit digital output. The channels are multiplexed. Successive
approximation technique is used for conversion.

There are five 8 bit 1/0 ports on 8097. Port 0 is an input only port which shares its pins
with the analog inputs to the A/D converter. Port 1 is a quasi-bidirectional 1/0 port. Port 2 is a
multifunctional port. Port 3 and port 4 pins have two functions. They are either bidirectional
ports with open-drain outputs or system bus pins which the memory controller uses when it is
accessing external memory.

The watchdog timer provides as a means of graceful recovery from a software upset.
Once the watchdog is initialized if the software fails to reset the watchdog at least every 64K
state times, a hardware reset will be initialized and the system will restart.

The addressable memory space on the 8097 consists of 64Kbytes. Locations 1FFEH and
1FFFH are reserved for ports 3 and 4 respectively. The 9 interrupt vectors are stored in locations
2000H through 2011H. 2012H through 207FH are reserved for Intel’s factory test code.
Resetting the 8097 causes instructions to be fetched starting from location 2080H. This location
was chosen to allow a system to have up to 8K of RAM continuous with the register file.
External memory is addressed through lines ADO- AD15 which forms a 16-bit multiplexed data
bus. These lines share pins with I/O ports 3 and 4.

Eight interrupt sources are available on the 8097. Software trap, Extint, serial port,
software timers, HSLO, high speed outputs, HIS data available, A/D conversion complete and
timer overflow.

Program 1
Addition of Two 16-Bit Numbers
Objective: To add two16 bit hex numbers and store the result at 8500.

Data Reg 1: 0003-------0000 0000 0000 0011
Reg 2: 0007-------0000 0000 0000 0111
Result (8500): 0000 0000 0000 1010 (000A)

Addition of Two 16-Bit Numbers

C Start)

L

‘ Load the Address into AX Reg. ‘

JL

‘ Load the 1° Data into BX Reg. ‘

L

‘ Load the 2nd Data into CX Reg. ‘

JL

‘ Add BX and CX reg. Contents ‘

L

‘ Store the Results at 8500 ‘

<
(End)

Subtraction of Two 16-Bit Numbers

(Start)

L

‘ Load the Address into AX Reg. ‘

L

‘ Load the 1° Data into BX Reg. ‘

AL

‘ Load the 2nd Data into CX Reg. ‘

JL

‘ Subtract CX from BX reg. Content ‘

<>

‘ Store the Results at 8500 ‘

<
C End)

42

43

Address Opcodes Mnemonics Comments

8100 LD AX #8500H Load AX with address 8500

8104 LD BX #0003H Load BX with data 0003

8108 LD CX #0007H Load CX with data 0007

810C ADD BX,CX ADD BX and CX contents
and store the result in BX

810F ST BX, [AX]+ Store the result from BX to
AX+

8112 SIMP HERE Short Jump

Program 2

Subtraction of Two 16-Bit Numbers
Objective: To subtract two16 bit hex numbers and store the result at 8500.

Data Reg 1: 0007------- 0000 0000 0000 0111
Reg 1: 0003------- 0000 0000 0000 0011

Result 8500 0000 0000 0000 0100 (0004)

Address Opcodes Mnemonics Comments

8100 LD AX #8500H Load AX with address 8500

8104 LD BX #0007H Load BX with data 0007

8108 LD CX #0003H Load CX with data 0003

810C SUB BX,CX SUB BX and CX contents and
store the result in BX

810F ST BX, [AX]+ Store the result from BX to AX+

8112 SIMP HERE Short Jump

Multiplication of Two 16-Bit Numbers

(Start)

(—

Load the Address into AX Reg.

(=

Load the 1° Data into BX Reg.

(=

Load the 2nd Data into LX Reg.

(=

Multiply LX and BX reg. Contents

L

Store the Results at 8500

b
(End)

One’s Complement of a 16-Bit Number

C D

@m
—+
QD
pmt

Load the Address into AX Reg.

(=

Load the Data into BX Reg.

(S

NOT Function with BX reg.

L

Store the Results at 9000

m<:‘
>
o

C D

44

45

Program 3
Multiplication of Two 16-Bit Numbers
Objective: To multiply two16 bit hex numbers and store the result at 8500.

Data Reg 1: 0007------- 0000 0000 0000 0111
Reg 1: 0003------- 0000 0000 0000 0011

Result (8500): 0000 0000 0001 0101 (0015)

Address Opcodes Mnemonics Comments

8100 LD AX #8500H Load AX with address 8500

8104 LD BX #0007H Load BX with data 0007

8108 LD CX #0003H Load CX with data 0003

810C MUL CX,BX MUL CX and BX contents
and store the result in CX

810F ST CL, [AX]+ Store the result from CX to
AX+

8112 ST CH, [AX]+

8115 SIMP HERE Short Jump

Program 4

One’s Complement of a 16-Bit Number

Objective: To find the one’s Complement of the 16 bit data in on chip register and store the
result at 9000.

Data RegBX: 1234------- 0001 0010 0011 0100

Result (9000): 1110 1101 1100 1011 (EDCB)

Address Opcodes Mnemonics Comments

8100 LD AX #9000H Load AX with address 9000
8104 LD BX #1234H Load BX with data 1234

8108 NOT BX NOT the BX content

810A ST BX [AX] Store the result from BX to AX
810D SIJMP 820D Short Jump

AND Operation of Two 16-Bit Numbers

C D

)
-+

tar

=

‘ Load the Address into AX Reg. ‘

=

‘ Load the 1°' Data into BX Reg. ‘

(=

‘ Load the 2nd Data into CX Reg. ‘

(=

AND Operation with CX and BX reg.
Content

(=

‘ Store the Results at 8500 ‘

m@
=]
o

C D

OR Operation of Two 16-Bit Numbers

(Start)

L

Load the Address into AX Reg.

L

Load the 1°' Data into BX Reg.

L

Load the 2nd Data into CX Reg.

<

OR Operation with CX and BX reg.
Content

<

Store the Results at 8500

L

(End)

46

Program 5

AND Operation of Two 16-Bit Numbers

Objective: To discuss the usage of AND instruction

Data Reg 1: 0003------- 0000 0000 0000 0011
Reg 2: 0007------- 0000 0000 0000 0111
0000 0000 0000 0011 (0003)

Result (8500):

47

Address Opcodes Mnemonics Comments
8100 LD AX #8500H Load AX with address 8500
8104 LD BX #0003H Load BX with data 0003
8108 LD CX #0007H Load CX with data 0007
810C AND DX,CX,BX AND BX and CX contents and
store the result in DX
8110 ST DX, [AX]+ Store the result from DX to
AX+
8113 SIMP HERE Short Jump
Program 6
OR Operation of Two 16-Bit Numbers
Objective: To discuss the usage of OR instruction
Data Reg 1: 0003------- 0000 0000 0000 0011
Reg 2: 0007------- 0000 0000 0000 0111
Result (8500): 0000 0000 0000 0111 (0007)
Address Opcodes Mnemonics Comments
8100 LD AX #8500H Load AX with address 8500
8104 LD BX #0003H Load BX with data 0003
8108 LDCX #0007H Load CX with data 0007
810C OR CX,BX OR BX and CX contents and
store the result in CX
8110 ST CX, [AX]+ Store the result from CX to
AX+
8113 SIMP HERE Short Jump

48

XOR Operation of Two 16-Bit Numbers

(Start)

<L

‘ Load the Address into AX Reg. ‘

L

‘ Load the 1% Data into BX Reg. ‘

L

Load the 2nd Data into CX Reg. ‘

<~

XOR Operation with CX and BX reg.
Content

<z

‘ Store the Results at 8500 ‘

L

(End)

49

Program 7
XOR Operation of Two 16-Bit Numbers
Objective: To discuss the usage of XOR instruction

Data Reg 1: 0003------- 0000 0000 0000 0011
Reg 2: 0007------- 0000 0000 0000 0111

Result (8500): 0000 0000 0000 0100 (0004)

Address Opcodes Mnemonics Comments

8100 LD AX #8500H Load AX with address 8500

8104 LD BX#0003H Load BX with data 0003

8108 LD CX #0007H Load CX with data 0007

810C XOR CX,BX XOR BX and CX contents and
store the result in CX

8110 ST CX, [AX]+ Store the result from CX to AX+

8113 SJMP HERE Short Jump

RESULT:

Thus the various arithmetic and logical operations were performed and verified using
8097 microcontroller.

50

51

EX.NO: DATE:

STUDY OF PROGRAMMABLE PERIPHERAL INTERFACE-8255
AIM

To study the Input/ Output and BSR mode operations of 8255 interfaced with 8051
microcontroller.

THEORY

PPI is abbreviation for Programmable Peripheral Interface. It is an 1/O port chip used for
interfacing 1/0 devices with microprocessor. It is a very commonly used peripheral chip. It
contains three 8 bit ports; Port A, Port B & Port C. Port C is composed of two independent 4-bit
ports : PC7-4 (PC Upper) and PC3-0 (PC Lower). The three ports of 8255 are divided into two
groups, Group A and Group B. Group A contains Port A (PAO — PA7) and Port C higher order
lines (PC4 — PC7). Group B contains Port B (PBO — PB7) and Port C lower order lines (PCO —
PC3). Group A can be configured in three modes: mode-0, mode-1 & mode-2. Whereas Group B
can configured in two modes: mode- 0 and mode-1.

The ports are configured as input or output by the command word. The command word
contains information such as mode, bit set, etc. i.e. the command word decides whether a Port is
input Port or output Port and the mode of data transfer through a port. The command word is
written into the control register of 8255. The control word of 8255 can only be written into, no
read operation is allowed.

There are 3 modes of operation for the ports of 8255. Mode 0, Mode 1, and Mode 2.

Read/Write control logic

The function of this block is to manage all the internal and external transfer of both data
and control or status word. The control pins with which the CPU communicates to 8255 are the
RESET, CS, RD, WR, A0, Al, DO — D7.1ts basic operations are as given in the following table.

RD - Active low read

WR - Active low write

CS - Active low chip select
A0, Al - Port address select

DO - D7 - Bidirectional data bus

52

Power —F 3 Gr;up
supplies | — GND | Group K" Pt K 1o
b L}
. — A RAT - PO
coritrol L
|
Group &
Comy: [G— T
Bi-directional Upper (414 PCT - PC4
data bus Data
— LT ”
07 - OO buffer .
. S bit Group B
r intemal {2::} Part C <::> 10
data bus Lower (4)ly PC3 - PCO
. |
BD =™ Reau Group
TR ———] liite J| O — :
] —————p| Contral v ﬂ }
Logic cortrol F;rt o ::'I} 10
Al ———* PBY - PRO
o i ®

Functional Block Diagram of 8255

53

Port address

The addresses for the four registers in the 8255 are:

Register Address
Control register C6
Port A CO
Port B C2
Port C C4

Programming the 8255

There are 2 control words in 8255
1. Mode Definition (MD) Control word and
2. Bit Set / Reset (BSR) Control Word

Program 1

To initialize port A as input port in modeO & to input the data, set by the SPDT switches through

port A
ADDRESS | LABEL OPCODE MNEMONICS COMMENTS

4100 MOV DPTR, # FFC6 H | FFC6-Address of the
control register

4103 MOV A #90H Move the control word
to the accumulator

4105 MOVX @ DPTR, A Output the control word
to the control register

4106 MOV DPTR, # FFCO H | FFCO- Address of port
A. The data set by the

4109 MOVX A, @ DPTR SPDT switch is moved
to accumulator

410A MOV DPTR, #4500 H | The accumulator value
is stored to the memory

410D MOVX @ DPTR, A location 4500

410E HERE SIMP HERE

Mode Definition (MD) Control word

111 -BIT 7

D7 | D6 | D5 | D4 | D3 D2 | D1 | DO
MODE SET
FLAG
1-1/0 MODE [*
0- BSR MODE
GROUP-B
GROUP-A
PORT C (lower)
MODE SELECT > 0-OUTPUT
00- MODE O - 1- INPUT
01- MODE 1
1X- MODE 2 PORT B
» 0-OUTPUT
PORT A 1-INPUT
0 - OUTPUT <
1-INPUT MODE SELECT
» 0- MODE 0
PORT C (upper) 1- MODE 1
0 - OUTPUT <
1-INPUT
D7 | D6 | D5 | D4 | D3 | D2| D1 | DO
BIT SET/ RESET
BIT SET/ RESET 1—SET
MODE B > 0-RESET
0- ACTIVE
PORT C- BIT SELECT
000 -BITO
001 -BIT 1
010 - BIT 2
> 011 —BIT3
NOT USED 100 — BIT4
SETTO 000 | 101 — BITS
110-BIT 6

54

progra

m 2

55

To initialize port A as input port & port B as an output port in mode 0.
To input the data, set by the SPDT switches through port A & to output the same data by

the LEDs through port B.

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS

4100 MOV DPTR,#FFC6 H | FFC6-Address of the control
register

4103 MOV A #90H Move the control word to the
accumulator

4105 MOVX @ DPTR, A Output the control word to
the control register

4106 MOV DPTR,#FFCOH | FFCO- Address of port A.
The data set by the SPDT

4109 MOVX A, @ DPTR switch is moved to
accumulator

410A MOV DPTR,#FFC2H | FFC2- Address of port B.
The accumulator value is

410D MOVX @ DPTR, A send through port B to glow
the LEDs.

410E HERE SIMP HERE

Program 3

To initialize port C as an output port in mode 0.
To output the data through port C.

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS

4100 MOV DPTR, # FFC6 H | FFC6-Address of the
control register

4103 MOV A, #90H Move the control word to
the accumulator

4105 MOVX @ DPTR, A Output the control word to
the control register

4106 MOV DPTR, # FFC4 H | FFC4-Address of the port C

4109 MOV A, #80 Move the accumulator with
data

410B MOVX @ DPTR, A To output the data through
port C

410C HERE SIMP HERE

56

Program 4

To initialize port C as an input port in mode 0.

57

ADDRESS | LABEL | OPCODE | MNEMONICS COMMENTS

4100 MOV DPTR, # FFC6 H | FFC6-Address of the control register

4103 MOV A, #99 H Move the control word to the
accumulator

4105 MOVX @ DPTR, A Output the control word to the
control register

4106 MOV DPTR, # FFC4 H | FFC4-Address of the port C

4109 MOV A, @ DPTR Move the data from port C to
accumulator

410A MOV DPTR, # 4500 H Move the accumulator content to the
memory location 4500

410D MOVX @ DPTR, A

410E HERE SIMP HERE

Result

The operation of 8255 in Input / Output mode has been studied and the results were verified.

58

O T, ——— LK O
D7 - D0 BUS Q:D <:> COUNTER SATE O
BUFFER aUT b

——— LK 1
£l> T e aTE 1

—— QLT 1

CTRL. — CLH 2
WD Q: Q:fl> CDU;.ITEFE TR
REG.

—— QT 2

R | READS
WWRITE

Lo

IMTERMAL BLIS

]
(1]
0

Block Diagram of 8253-Programmable Interval Timer

D D : Lr: Data Bus |1 | :> Transmit XD
’ o Buffer [l 1] Buﬁ‘e‘r —————
(P - 5}
F 3 :
3
RESET —=]
LK | Read/write [~ Transmit $§EDY
CF{S —-c- Control as -— Gontrol T=C
WR Logic =
CS—= v
=
=
=
DSHR —= = _
DTR Modem = < Recieve 7 XD
LTS —= Control] B‘uf‘fer B —
RTS —=—o —11 (5 -P)
]
¥
Recieve EiEDV
Control [, o SYNDET/BD
=

59

Block Diagram of 8251-Programmable Communication Interface

EX.NO: DATE:

SINGLE CHARACTER TRANSMISSION AND RECEPTION USING 8051
MICROCONTROLLER

AIM:

To initiate 8253 and 8251 and to check the transmission and reception of a character.

The Programmable Interval Timer/Counter — 8253:

The 8253 programmable Interval timer consists of three independent 16-bit programmable
counters (timers). Each counter is capable of counting in binary or binary coded decimal. The
maximum allowable frequency to any counter is 10MHz. This device is useful whenever the
microprocessor must control real-time events. The timer in a personal computer is an 8253. To
operate a counter a 16-bit count is loaded in its register and on command, it begins to decrement
the count until it reaches 0. At the end of the count it generates a pulse, which interrupts the
processor. The count can count either in binary or BCD.

Data bus buffer- It is a communication path between the timer and the microprocessor. The
buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor.

Read / write logic controls the reading and the writing of the counter registers.

Control word register, specifies the counter to be used and either a Read or a write operation.

>
[SEN

A0 Selection
Counter 0
Counter 1
Counter 2
Control
Register

= PO O

0
1
0
1

Each counter in the block diagram has 3 logical lines connected to it. Two of these lines, clock
and gate, are inputs. The third, labeled OUT is an output.

Clock - clock input for the counter. The counter is 16 bits. It provides the basic operating
frequency to the timer. The maximum clock frequency is 1 / 380 nanoseconds or 2.6megahertz.
Out - this is the output of the timer.

Gate — controls the timer. 1t’s used either to enable or disable the counter.

The 8253 can operate independently in any one of the 6 modes. They are
Mode 0 Interrupt on terminal count
Mode 1 Programmable one shot

Mode 2 Rate Generator

b7

D6

D5

D4

D3

D2

D1

i

SC1

SCO

RL1

RLO

M2

M1

BCD

0 Binary counter (16-ti

[—

BCD (4 decades|

Mode0

Mode 1

== c-]-n:n-

Maoda 3

|Mode 4

|::p::|—-—--i:-;1:-

0

i

0 Mode2
-

0

1

Counter latching operation

Readfload LS8 only

Readload MSBonly

r-- - = =]

0

| Setact counter

Read/load L5B first, then M3B

e

I1

" Selct couner 2

1

Select counber 1

Ilegal

8253-Control Word Format

CLRCITI

I.h::d;? roanrs

61

Mode 3 Square wave rate Generator

Mode 4 Software triggered strobe

Mode 5 Hardware triggered strobe

Programmable Communication Interface-8251 (USART)

The 8251 is used as a peripheral device for serial communication and is programmed
by the CPU to operate using virtually any serial data transmission technique. The USART
accepts data characters from the CPU in parallel format and then converts them into a
continuous serial data stream for transmission. Simultaneously, it can receive serial data
streams and convert them into parallel data characters for the CPU. The CPU can read the
status of USART at any time. These include data transmission errors and control signals.
Prior to starting data transmission or reception, the 8251 must be loaded with a set
of control words generated by the CPU. These control signals define the complete
functional definition of the 8251 and must immediately follow a RESET operation. Control
words should be written into the control register of 8251.

Command Instruction Format:

This format defines a status word that is used to control the actual operation of
8251. All control words written into 8251 after the mode instruction will load the command
instruction. The command instructions can be written into 8251 at any time in the data block
during the operation of the 8251. To return to the mode instruction format, the master reset
bit in the command instruction word can be set to initiate an internal reset operation which
automatically places the 8251 back into the mode instruction format. Command instructions
must follow the mode instructions or sync characters.

There are two types of control word.

1. Mode instruction (setting of function)
2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the function of the 8251. Mode instruction will be in "wait
for write™ at either internal reset or external reset. That is, the writing of a control word after
resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:
* Synchronous/asynchronous mode
* Stop bit length (asynchronous mode)

* Character length

D Dg Ds Dy Dy D, D D
54 Sy EP PEN Lo L, By B4
' Baud Rate Factor
0 1 0 1
> 0 0 1 1
R t
ﬁf;.'f 1x | 16x | 64x
SYNC
Charactor Length
0 1 0 1
- 0 0 1 1
Sbhits | Gbits | 7bits | 8bits
Parity Check
- 1 0 1
0 1 1
. Odd . Even
Disable Parity Disable Parity
Stop bit Length
- 0 1 0 1
- 0 0 1 1
Inhabit 1 bit 1.50its | 2 bits
8251-Asynchronous Mode Instruction Format
D, Dy Ds D, D D» D, Dy
|scs [eso [er [pen | Lo | L [o | o |
Charactor Length
0 1 0 1
] 0 1 1
Sbits | Bbits | 7bits | 8bits
Parity
»] 1 0 1
0 0 1 1
Disable ,,2";.3,, Disable Ffa"f,"w
Synchronous Mode
- 0 1
Internal External
Synchronization | Synchronization

Number of Synchronous Charactors

0

1

2 Charactors 1 Charactor

62

63

8251-synchronous Mode Instruction Format
* Parity bit
* Baud rate factor (asynchronous mode)
* Internal/external synchronization (synchronous mode)
* Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 4 and 5. In the case of
synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters
were written, a function will be set because the writing of sync characters constitutes part of
mode instruction.

2) Command

Command is used for setting the operation of the 8251. It is possible to write a command
whenever necessary after writing a mode instruction and sync characters. Items to be set by
command are as follows:

* Transmit Enable/Disable

* Receive Enable/Disable

* DTR, RTS Output of data.
* Resetting of error flag.

* Sending to break characters
* Internal resetting

* Hunt mode (synchronous mode)
3) Status Word

It is possible to see the internal status of the 8251 by reading a status word. The bit configuration
of status word is shown in Fig. 7.

The following table gives the addresses of the peripheral.
8253 Control Register------- FFCE 8253 Channel0 ------- FFC8
8253 Channel 1~ ------- FFCA 8253 Channel 2~ ------- FFCC

8251 Control Register------- FFC2 8251 Data Register ~ ------- FFCO

Dy Da

Os

04

Do

EH

RTS

ER | SBRK

RXE

DTR

TXEN

1...Transmit Enable
0...Disable

|

T
T

s

o =0

=

ll=
=

=0
=1

=2
=]

—y

...Recieve Enable
...Disable

=

—y

...Sent Break Charactor
0...Normal Opearation

—_

...Reset Error Flag

=

..Normal Operation

|

T
T

o

= =3

3

ll <
s

=0
=1

s
ol

1...Internal Reset
0...Normal Operation

1.._Hunt Mode {Note)
0...Normal Upﬂl‘ﬁliﬂl‘l

64

Note: Seach mode for synchronous
charactors in synchronous mode.

Fig. 6- Bit Configuration of Command

65

Program-To Check Transmission and Reception of a Character

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

8100 MOV A #36 Channel 0 in mode 3

8102 MOV DPTR, #FFCE | 8253-Control Reg. address

8105 MOVX @DPTR,A

8106 MOV A #0A to get an output frequency of
150KHZ at ch-0, so as to get a
baud rate of 150KHZ at ch-0.

8108 MOV DPTR#FFC8 | 8253-Control 0 address

810B MOVX@DPTR,A

810C MOV A #00

810E MOVX @DPTR,A

810F MOV A #4E 8251-Mode Command Word

8111 MOV DPTR#FFC2 | 8251-Control Reg. address

8114 MOVX@DPTR,A

8115 MOV A #37 8251-Control Word

8117 MOVX @DPTR,A

8118 MOV A#41 Data

811A MOV DPTR#FFCO | 8253-Data Reg. address

811D MOVX@DPTR,A

811E MOVX A, @DPTR

811F MOV DPTR, #8200

8122 MOVX@DPTR,A

8123 HERE: SIMP HERE

RESULT:

The program receives the character 41H and stores it at location 8200H.

D7 Dg Ds Da D D2 D Dy
DSR S?I.';%ET FE OE PE | TXEMPTY | RXRDY | TXROY

L Parity Differant from
TXRDY Terminal.

Refer to "Explanation”
of TKRDY Terminals.

Same as terminal.

#——m Refer to "Explanation”
of Terminals.

» 1. Farity Error

1...0verrun Error

1...Framing Error

Note: Only asynchronous mode.
Stop bit cannot be detected.

Shows Terminal DSR

1..08R=0
0..DSR =1

Fig. 7:Bit Configuration of Status Word

66

67

BCD INPUTS BCD TO 7 f b CS'\I:/IONé)Cl)EN
SEGMENT — DISPLAY
4 DECODER
€ c
oaassss——— @
d dp
Data
bus SEGMENT -dp
L LATCH
{
Data 8
% DIGIT
LATCH DIGIT ENABLE
LOGIC
Address &
Control
Signals CHIP
L SELECT
LOGIC

68

69

EX.NO: DATE:

SEVEN SEGMENT LED DISPLAY USING 8051 MICROCONTROLLER

AIM

To develop programs for displaying fixed message and rolling message using 8051
Microcontroller.

THEORY

The seven segment display is the most commonly used, least expensive and the easiest to
interface with the microprocessor. There are two types of seven segment displays

They are
(i) Common cathode display
(i) Common anode display

Common cathode display Common anode display

GND

For a common anode display, a low is applied to a segment to turn it on. For a Common cathode
display a high is applied to a segment to turn it on. In this board Common cathode display is
used.

Static Displays

A seven segment display is driven by a BCD to seven segment driver / decoder. When the BCD
input is sent to the inputs of the BCD-to-seven segment decoder, it outputs low on the segments
required to display the number represented by the BCD code. This circuit is referred to as static
display.

70

71

Disadvantages of Static Displays

1. Power consumption is very high when more number of seven segment displays are used. The
current required by the decoders and LED displays might be several times the current required
by the rest of the circuitry in the instrument used.

2. Separate decoders are required for each seven segment display.

Multiplexed Displays

To overcome the disadvantage of static displays, multiplexed displays are used. The trick of
multiplexing displays is that the segment information is sent out to all of the digits on a common
bus. But only one display is turned ON at a time, at which the information is displayed. So it is
possible to display 8 information at different digits by simultaneously switching the data as well
as the digit-location in a sequential order.

Program 1
To display a fixed message “HELLO”

VBMB-016 is used to display 8 digits of information using a simple software routine. The
algorithm used in the software is as follows

e Select the most significant digit by issuing a suitable control word to the digit
select port.

e Out the Hex code corresponding to the first digit information to the data port.

e Introduce a delay for atleast 2 msec.

e Select the second digit.

e Out second digit Hex code.

e Introduce delay for 2ms.

e Likewise repeat for all digits.

e After displaying the 8" digit, repeat from the first digit.

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

4100 START MOV DPTR, #4200 Move the data pointer with
the memory address of the
message to be displayed

4103 MOV R2, DPL

4105 CON MOV R3, DPH

4107 MOV RO, #07

4109 MOV R7,#08 Initialize no. of digits to
scan

410B L1 MOV A, RO Select digit position

410C MOV DPTR, # FFCO

72

73

410F MOVX @ DPTR, A
4110 MOV DPL,R2 Out the Hex code
corresponding to the digit
4112 MOV DPH, R3 information to the data
port
4114 MOVX A, @ DPTR
4115 MOV DPTR, # FFC8
4118 MOVX @ DPTR, A
4119 LCALL DELAY Call the delay subroutine
program
411C INC R2 Select the next digit by
incrementing the data
pointer
411D DEC RO Check if 8 digits are
displayed, if not repeat
411E DINZ R7,L1 from first digit
4120 JMP START After displaying the 8"
digit, repeat from the first
digit
4122 DELAY MOV R4,#02
4124 L3 MOV R5,#FF Delay program for 2 msec
delay
4126 L2 DINZ R5,L2
4128 DINZ R4,L3
412A RET
Character | D7 D6 |D5 |[D4 |[D3 |[D2 |D1 |DO |Hex | Address
H 0 1 1 1 0 1 1 0 76 4200
E 0 1 1 1 1 0 0 1 79 4201
L 0 0 1 1 1 0 0 0 38 4202
L 0 0 1 1 1 0 0 0 38 4203
0 0 0 1 1 1 1 1 1 3F 4204

74

Data-0to 7

Address

4200
4201

4202

4203

4204
4205
4206

4207

4208
4209
420A
420B
420C
420D
420E
420F
4210

4211

4212

4213

4214

4215

4216

Hex

3F
06

5B
4F
66

6D
7D
07

00
00
00
00
00
00
00

3F
06

5B
4F
66

6D
7D
07

DO

D1

D2

D3

D4

D5

D6

D7

0
0
0
0
0
0
0

Character

Blank

Blank

Blank

Blank

Blank

Blank

Blank

75

Program 2
To display a Rolling message “0 to 7”

e This program displays a block of information (integers 0-7) in a rolling mode.

e The data are stored from memory location 4200. The contents of memory locations from
4200H must be as follows. First block from 4200-4207 is displayed, then 4201-4208 is
displayed, likewise the message is left shifted and displayed.

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS
4100 REP MOV R1,0F Delay for rolling
4102 MOV R4, 00
4104 CON MOV DPTR, # Move the data pointer with
4200 the memory address of the
message to be displayed
4107 MOV R2, DPL
4109 MOV R3, DPH
410B MOV A R4
410C ADD A/R2
410D MOV R2, A
410E MOV RO, #07
4110 MOV R7,#08 Initialize no. of digits to scan
4112 L5 DEC R7
4113 MOV A, RO Select digit position
4114 MOV DPTR, # FFCO
4117 MOVX @ DPTR, A
4118 MOV DPH, R3 Out the Hex code
corresponding to the digit
411A MOV DPL, R2 information to the data port
411C MOVX A, @ DPTR
411D MOV DPTR, # FFC8

76

77

4120 MOVX @ DPTR, A

4121 LCALL DELAY Call the delay subroutine
program

4124 INC R2 Select the next digit by
incrementing the data pointer

4125 DEC RO Check if 8 digits are
displayed, if not repeat from

4126 CINE R7,#00, L5 | firstdigit

4129 DINZ R1,CON

412B MOV A R2

412C MOV R6, # 07

412E SUBB A R6

412F MOV R2, A

4130 CINE R2,#0F, Check for the completion of

RE rolling process of 16

characters

4133 JMP REP

4135 RE INC R4

4136 JMP CON Repeat from the first digit

4138 DELAY PUSH DPL

413A PUSH DPH

413C MOV DPL,#02

413F L3 MOV DPH, #FF | Delay program for 2 msec

4142 L2 DINZ DPH, L2 delay

4145 DINZ DPL, L3

4148 POP DPH

414A POP DPL

414C RET

Result

The programs for displaying fixed and rolling messages using 8051 microcontroller has been

developed and the results were verified.

78

S N
REAR VIEW
FRONT VIEW N
FLUX
< ROTOR
N
Séggg E E)

Fig. 2 Stepper motor- Cross sectional view

79

EX.No: DATE:

STEPPER MOTOR CONTROL USING 8051 MICROCONTROLLER
AIM

To control stepper motor in Clockwise and Anticlockwise direction using 8051
microcontroller.

THEORY
STEPPER MOTOR SPECIFICATION

Supply voltage : 12V
No. of stacks ; 2

Wit : 2Kg
Total no. of rotor teeth : 100

Stepper motor

A Stepper motor is a device which converts digits pulses to precise angular movements. The
rotory motion occurs in a stepwise manner from one equilibrium position to the next. Stepper
motors are widely used in simple position control systems in the open and closed loop mode. It
is used for variety of applications such as computer peripherals (printers, disk driver etc.) and in
the areas of process control machine tools, medicine, numerically controlled machines and
robotics.

A Stepper motor could be either of the reluctance type or of the permanent magnet type (PM). A
PM stepper motor consists of multi-phase stator and two part permanent magnet rotor. The VR
stepper motor has un-magnetised rotor. PM stepper motor is the most commonly used type. The
basic two phase stepper motor consists of two pairs of stator poles. Each of the four poles has its
own winding. The excitation of any one winding generates a north pole (N), a south pole(S) gets
induced at the diametrically opposite side.

As shown in the Fig.1, the four pole structure is continuous with the stator frame and the
magnetic field passes through the cylindrical stator annular ring. The rotor magnetic system has
two end faces. The left face is permanently magnetised as South Pole and the right face as north
Pole. The South pole structure and the North Pole structure possess similar pole faces.

The North Pole structure is twisted with respect to the South Pole structure, so that South
Pole comes precisely between two north poles. The North Pole structure is offset with respect to
the South Pole structure by one pole pitch. The cross sectional view is shown in Fig. 2. Inan
arrangement where there are four stator poles and three pairs of rotor poles, there exists
12 possible stable positions in which a south pole of the rotor can lock with a north pole of the
stator.

There are three different schemes available for "stepping"” a stepper motor. They are:
(a)Wave scheme

(b) 2-phase scheme and (c) Half stepping or mixed scheme

Table for 2-phase switching scheme

80

S Clockwise Anticlockwise

-IIE- Al | A2 | Bl |B2 Al | A2|Bl1|B2

i D7 |D6 |D5 | D4 | D3| D2 |D1|DO0 |Firing | D7 |D6|D5|D4|D3|D2|D1|DO0 | Firing
angle Angle

1| x| x| x| x| 10|01 09 X | x| x| x| 1]0|1]|0 0A

2/ X | x| x| x|0|1]0]|1 05 X | x| x| x|0]1|1]|0 06

3| x| x| x| x |0} 1]1]0 06 X | x| x| x|0]1|0]|1 05

4 X | x| x| x[1]0]1]0 0A X | x| x| x| 1]0|0|1 09

81

2-phase scheme

In this scheme, any two adjacent stator windings are energised. There are two magnetic
fields active in quadrature and none of the rotor pole faces can be in direct alignment with the
stator poles. A partial but symmetric alignment of the rotor poles is of course possible. Typical
equilibrium conditions of the rotor when the windings on two successive stator poles are excited
is illustrated in Fig.3. In step (a), Al and B1 are energised. The pole-face S1 tries to align itself
with the axis of A1l (N) and the pole face S2 with B1(N). The north pole N3 of the rotor finds
itself in the neutral zone between A1(N) and B1(N). S1 and S2 of the rotor, position themselves
symmetrically with respect to the two stator north pole. Next, when B1 and A2 are energised,
S2 tends to align with B1(N) and S3 with A2(N). Of course, again under equilibrium conditions,
only partial alignment is possible and N1 finds itself in the neutral region, midway between
B1(N) and A2(N) [Step (b)]. In step (c), A2 and B2 are on. S3 and S1 tend to align with A2(N)
and B2(N), respectively, with N2 in the neutral zone. Step (d) illustrates the case when Al and
B2 are on. The switching sequence for the 2-phase scheme is given below

The stepping action is caused by sequential switching of the power supply to 2 phases of
motor having double winding with centre taps. The angle of each step for the motor can be
calculated as

0
Step angle in degrees = 36*0
Where,
N is the No. of the stacks.
N, is the No. of rotor teeth.
. _ 3600 _ 0
Step angle in degrees = T 1.8

Therefore,

0
No. of steps / revolutions = %: 200 steps

The firing pulses corresponding to data 0A, 06, 05, & 09 cause 4 steps movement. i.e., in
each sequence it produces 4 steps.

Therefore,

No. of sequence requiring to produce one revolution = No. of steps / revolution
No. of step / sequence

=20 _504=32h

4

step (¢)

Fig. 3

STATOR 5
- HEUTRAL —°

ARLS

2-phase drive scheme

step (d)

82

83

Program
ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS

4100 START MOV R4,#32H Initialize a counter with the
No. of sequence required to
produce one revolution

4102 L2 MOV DPTR, #FD Move DPTR with the
memory address having
clockwise sequence

4105 LCALL L1 Call the loop L1 for 4-step
sequence

4108 DINZ R4, L2 Check for the completion of
one revolution, if not
completed go to loop L2

410A LCALL DELAY Delay between forward and
reverse rotation

410D MOV R4,#32H Initialize a counter with the
No. of sequence required to
produce one revolution

410F L3 MOV DPTR, # RV Move DPTR with the
memory address having
Anticlockwise sequence

4112 LCALL L1 Call the loop L1 for 4-step
sequence

4115 DINZ RA4,L3 Check for the completion of
one revolution, if not
completed go to loop L3

4117 LCALL DELAY Delay between forward and
reverse rotation

411A SIMP START Start from beginning

411C L1 MOV RO,#04H

411E LOOP MOVX A, @ DPTR

411F PUSH 83H

4121 PUSH 82H

4123 MOV DPTR,#FFCOH

4126 MOV R2,#04 H

Y
G

..........

B .
Uac s :
U3 :’J >_|.ﬁi 8] LK
b4 : P &
o gEE @ o I
b T
D3 2'}'-1'&— >—H~* == | Y T (R
04 44 M3 _L\T\ ;t:t:trt:i;
BT sl
| SR,
- o
Sy B o
oz 42 ! :; 3.36
b3 2} T 4
D4 3*. Pomy

IEAFERES

Stepper Motor Interface

84

RI=-R1Z
12E/ 1M

Di-D4
IM4 148

Gl-04
TiF 122

"I-l

R13-R1lé
22E/1N

0E=0B
IN4 148

e5-48
TIF 132

85

4128 L7 MOV R1,#05H
412A L6 MOV R3,#FFH
412C L4 DINZ RS3, L4
412E DINZ R1,L6
4130 DINZ R2,L7
4132 MOVX @ DPTR, A
4133 POP 82 H
4135 POP 83 H
4137 INC DPTR
4138 DIJNZ RO, LOOP
413A RET
413B DELAY MOV R5,#01H
413D L9 MOV R2,#05H Delay program
413F L8 DINZ R2,LS8
4141 DINZ R5, L9
4143 RET
4200 FD 09,05,06,0A Data for forward and
reverse rotation
4204 RV 0A,06,05,09
Result

the direction of rotation and speed.

The control of stepper motor using 8051 Microcontroller has been studied by changing

86

87

EX.NO: DATE:

KEYBOARD DISPLAY INTERFACE 8279 USING 8051
MICROCONTROLLER

AIM

To study the performance of keyboard display interface 8279 and to execute the following
programs.

1. To display character ‘A’

2. To display a Rolling message ‘HELP US’
3. To read a key

3. To accept a key and display it

THEORY

The 8279 is a Hardware approach to interface a matrix keyboard & a multiplexed display. The
keyboard segment can be connected to a 64 contact key matrix. Keyboard entries are debounced
and stored in the internal FIFO memory; an interrupt signal is generated with each entry. The
display segment can provide a 16 character scanned display interface with LED’S. This segment
has 16*8 R/W memory (RAM), which can be used to read/write information in right entry or left
entry format.

The four major sections of 8279 are
1. Keyboard

2. Scan

3. Display

4. Microprocessor interface

KEYBOARD SECTION

The keyboard section consists of 16 keys and the keys are automatically debounced. The
keyboard can be operated in 2 modes.

1. Two-key lockout
2. N-key roll over

In the two-key lock out mode, if two keys are pressed simultaneously, only the first key is
recognised. In the N-key rollover mode, simultaneous keys are recognised and their codes are
stored in the internal buffer.

88

DATA BUS
8279
DO
.| DBO Ve
bz 14| DFL
15 | DB2 22K x8
D3 DB3
pa 16| obo R1 BC 158 x 8
D5 17 27 |~
ﬁDBS OAO0 I\Ql a
D7 19 DB6 R3
————— DB7 OA1 26 o
Al 21, |\Q2 b
RST 9 |RsT s RS b
PCLK 3 | cK OA2 I\Q3 c
—dor 2RO 2 R b
oW 11 M OA3 Q4 d
SEL_ %28 R2 I\
INTR 4 IRQ 31 78
23 | BD B0 I\QS e
RLO 38 RLO 20 R4 I‘/
RL1 319 RL1 OB1 |\Q6 f
RL3 2 | RL3 0OB2 Q7 9
6
RL5 RL5 R8
RL6 " Ri6 oB3 28 Whlf Q8 dp
RLI 384 RL7 c/s g7 ONTL |
stz 36 SHF J 1 2 3 4 5 6
SHFT
33 |11
25w sa ¥/ HHHBAHB
U4
SO R14 I\‘é
14
S1 R13 |/11
1 74138 15 R12 [P
b I\Q13
A YO
2 y1 ptt R11 |
. e g :g FA4 Hq10
3 Y3 R10 |~
= 12
¢ 11 S4 — Q9
RST 4 Y4 b 9 |«
9G2A Y5 | 10 S5 WQQ
5
= y7 P S6 =
6 61 sS7/

INTR

u3

RST 7.5

-
e | RST75
RST 7.5

KEYBOARD DISPLAY INTERFACE

89

SCAN SECTION

This section has 4 scan lines SLO-SL3. The 4 scan lines are decoded using 4 to 16 decoder to
generate 16 lines for scanning. These lines can be connected to the rows of a matrix keyboard &
digit drivers of multiplexed display.

DISPLAY SECTION

This section has 8 output lines divided into 2 groups A0-A3 & B0-B3. They can be either as 8
lines or 2 groups of 4 lines in conjunction with scan lines for multiplexed display. The display
can be blanked using BD lines. This section includes 16*8 display RAM. The microprocessor
can read from or write into any of these registers.

MICROPROCESSOR INTERFACE SECTION

This includes 8 bidirectional data lines DB0-DB7, one IRQ and 6 lines for interfacing. The IRQ
line goes high whenever data entries are stored in FIFO. This signal is used to interrupt the
microprocessor to indicate availability of data.

Display mode setup
The command word for keyboard and display mode is,

0 0 0 D D K K K

DD - Display Mode

00 8- bit character display — left entry
01 16 - bit character display — left entry
10 8- bitcharacter display — right entry
11 16 - bit character display — right entry

KKK - Keyboard Mode

000 Encoded scan keyboard — 2 key lockout
001 Encoded scan keyboard — 2 key lockout
010 Encoded scan keyboard — N key rollover
011 Decoded scan keyboard — N key rollover
100 Encoded scan sensor matrix

101 Decoded scan sensor matrix

110 Strobed input, Encoded display scan
111 Strobed input, Decoded display scan

Clear Display

The command word for clear display is,

1 1 0 CD CD CD CF

CA CF CD C CD

Specify the blanking code to be
sent to the segments to turn them
off

If CD=1, Enables clear display

If CD=0, the contents of RAM will be
displayed

If CF=1, FIFO status is cleared

Clear all bit has the combined effect

of CD and CF
Write display RAM
The command word for write display RAM is,
1 0 0 Al A A A

Al AAAA

Auto increment flag
If Al=1, the row address selected will be

incremented after each read or write to the display
RAM

CA

90

KEYBOARD DISPLAY INTERFACE

Program 1

To display character ‘A’

91

To initialize 8279 and to display the character ‘A’ in the first digit of the display.

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS

4100 MOV DPTR, # FFC2 FFC2- Address of control/status
register

4103 MOV A, #00 Set mode and display

4105 MOVX @DPTR, A

4106 MOV A, # CC Clear display

4108 MOVX @DPTR, A

4109 MOV A, #90 Write display

410B MOVX @DPTR, A

410C MOV DPTR, # FFCO FFCO- Address of data register

410F MOV A, # 88 Display the character ‘A’

4111 MOVX @DPTR, A

4112 MOV RO, # 05
Blank the rest of the display

4114 MOV A, #FF

4116 LOOP MOVX @DPTR, A

4117 DINZ RO, LOOP

4119 HERE SIMP HERE

92

Program 2

To display a Rolling message ‘HELP US’

93

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS
4100 START MOV DPTR, # FFC2 FFC2- Address of
control/status register
MOV RO, # 00 To initialize look-up
table at 4400
MOV R1, # 44
4103 MOV A, # 10 Set mode and display
4105 MOVX @DPTR, A
4106 MOV A, # CC Clear display
4108 MOVX @DPTR, A
4109 MOV A, #90 Write display
410B MOVX @DPTR, A
LOOP MOV DPH, R1
MOV DPL, RO
MOVX A, @ DPTR
410C MOV DPTR, # FFCO FFCO- Address of data
register
4111 MOVX @DPTR, A

LCALL DELAY

INC RO

CINE RO, #0F, LOOP

4119

SIMP START

Look up table -HELP US

Memory | Hex code | Display

Address Character
4400 FF Blank
4401 FF Blank
4402 FF Blank
4403 FF Blank
4404 FF Blank
4405 FF Blank
4406 FF Blank
4407 FF Blank
4408 98 H
4409 68 E
440A 7C L
440B C8 P
440C FF Blank
440D 1C U
440E 29 S
440F FF Blank

94

Delay Program

95

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS

4500 MOV R4, #A0

4502 LOOP2 MOV R5, # FF

4504 LOOP1 NOP

4505 DJINZ R5, LOOP1

4507 DINZ R4,LOOP2

4509 RET

Program 3
To read a key
ADDRESS LABEL OPCODE MNEMONICS COMMENTS

4100 MOV DPTR, # FFC2 | FFC2- Address of
control/status register

4103 WAIT MOV A @ DPTR Check for a key
closure- To identify

4104 ANL A, #07 key closure last 3 bits
of status word is

4106 Jz WAIT continuously
monitored.

4108 MOV A #40 To read the FIFO
RAM register

410A MOVX @DPTR, A

410B MOV DPTR, # FFCO | FFCO- Address of data
register

410E MOV A, @DPTR

410F MOV DPTR, #4200

4112 MOVX @DPTR, A Key code is stored in
the memory location
4200

4113 HERE SIMP HERE

Look up table

Memory | Hex code | Display

Address Character
4200 oC 0
4201 9F 1
4202 4A 2
4203 0B 3
4204 99 4
4205 29 5
4206 28 6
4207 8F 7
4208 08 8
4209 09 9
420A 88 A
420B 38 B
420C 6C C
420D 1A D
420E 68 E
420F E8 F

96

Program 4

To accept a key and display it

To initialize 8279 and to accept and display a key pressed.

97

ADDRESS | LABEL OPCODE MNEMONICS COMMENTS
4100 MOV R1,#42 Set the pointer to 4200
4102 MOV RO, #08
4104 MOV DPTR, # FFC2 | FFC2- Address of
control/status register

4107 MOV A /#00 Set mode and display

4109 MOVX @DPTR, A

410A MOV A #CC Clear display

410C MOVX @DPTR, A

410D MOV A /#90 Write display

410F MOVX @DPTR, A

4110 MOV A #FF

4112 MOV DPTR, # FFCO | FFCO- Address of
data register

4115 LOOP MOVX @DPTR, A

4116 DINZ RO, LOOP

4118 HERE MOV DPTR, # FFC2

411B WAIT MOV A @ DPTR Check for a key
closure- To identify

411C ANL A, #07 key closure last 3 bits
of status word is

411E JZ WAIT continuously
monitored.

4120 MOV A /#40 To read the FIFO

4122 MOVX @DPTR, A RAM register

4123 MOV DPTR, # FFCO

4126 MOV A @DPTR

4127 ANL A, #0F Get the key code
pressed

98

99

4129 MOV DPL, A

412B MOV DPH, R1

412D MOVX A, @DPTR Code from look up
table

412E MOV DPTR, # FFCO

4131 MOVX @DPTR, A Display the key
pressed

4132 SJMP HERE Jump to loop with the
label HERE

Result

Thus various programs has been executed with 8279 interfaced with 8051 microcontroller.

Interfacing DAC to 8097 Microcontroller

LATCH
74213
(U8)

(D8-D11

LATCH
74273
(U12)

DAC AD7521
(U3)

OP-AMP
CIRCUITRY

|0UT2

100

DAC OUT
—q

101

EX.NO: DATE:

APPLICATIONS OF 8097 MICROCONTROLLER

A) DIGITAL TO ANALOG CONVERTER
AIM

To generate saw tooth, triangular and square waveform using 8097 microcontroller, DAC
AD 7521.

APPARATUS REQUIRED

1. Microcontroller(8097) kit
2. CRO
3. Probes

THEORY

The 12 data lines (D0-D11) are connected to the DAC through an 8 bit and 4 bit latches.
The current outputs are passed onto an Op-amp circuit which gives the voltage output. This
voltage output is differential and a maximum of 20v peak to peak can be obtained by changing
the load resistor value of the Op-amp.

PROCEDURE

1. Connect the microcontroller 8097 analog 1/0O bus pin 10 to the CRO channel.
2. Switch on the power supply and enter the program.
3. Execute the programs and trace the waveforms.

Program 1-Saw tooth waveform

Address Opcode Label Mnemonics Comments

8100 START LDAX, #0FF10H Load DAC port-A add in
AX reg.

8104 LD BX,#0000 Load BX reg with 0000

8108 LOOP ST BX, [AX] Out BX through PORT-A

810B ADD BX, #0001 Add 0001 to BX reg

810F CMP BX#07FFH Compare BX with 07FF

8113 JNE LOOP Not equal ,Out BX value,
till the condition satisfied

8115 SIMP START Short Jump

102

Program 2-Triangular waveform

103

Address | Opcode Label Mnemonics Comments

8100 START LDAX, #0FF10H Load DAC port-A add in AX
reg.

8104 LD BX,#0000 Load BX reg with 0000

8108 LOOP1 | ST BX, [AX] Out BX through PORT-A

810B ADD BX, #0001 Add 0001 to BX reg

810F CMP BX,#01FFH Compare BX with 01FF

8113 JNE LOOP1 Check the condition

8115 LOOP2 | ST BX,[AX] Out BX through PORT-A

8118 SUB BX,#0001 Subtract 0001 from BX reg.

811C CMP BX, #0000H Compare BX with 0000

8120 JNE LOOP2 Check the condition

8122 SIMP START Short Jump

Program 3-Square waveform

Address Opcode Label Mnemonics Comments

8100 LDAX, #0FF10H Load DAC port-A add in
AXreg.

8104 START LD BX,#0000 Load BX reg with 0000

8108 ST BX, [AX] Out BX through PORT-A

810B SCALL DLY Short call Delay

810D LD BX#0FFFH Load Bx reg with OFFF

8111 ST BX, [AX] Out BX through PORT-A

8114 SCALL DLY Short call Delay

8116 SIMP START Start Jump

8118 DLY LD CL #FF Delay Program

811B LOOP SUB CL #01

811E CMP CL,#00

8121 JNE LOOP

8123 RET

104

105

B) ANALOG TO DIGITAL CONVERTER
AlIM:
To convert the given analog input to digital output.

APPARATUS REQUIRED:

1. Microcontroller(8097) kit
2. Potential Divider

3. Digital Mutimeter

4. 5v DC source

THEORY:

The 8097 has eight Analog to Digital converter channels. The special features of the on-
chip ADC are:

10- bit successive approximation type ADC
22usec conversion time

0 to 5v unipolar input to ADC

Built in sample and Hold

ADC sampling through the internal timer of 80196.

o s wnNh e

Analog to digital conversion can be initiated in any one of the ADC channels. The channel can
be writing onto the ADC command register. The AD conversion begins by writing onto the
command register or by means of trigger from the high speed output unit. The command register
is at on- chip memory address 02. The format of ADC command register is:

7 6 5 4 3 2 1 0

X X X X GO | - CH# | -——

CH# selects which of the eight analog input channels is to be converted to digital form.

GO indicates when the conversion is to be initiated. When GO=1 means start now. GO=0 means
conversion is to be initiated by HSO unit at the specified time.

Results of the ADC are read from the ADC result register at locations 02 and 03. Note that the
ADC status bit may not be set until 8 state times after the GO command, so it is necessary to
wait 8 state times before testing it.

PROCEDURE:

1. Connect a voltage source to the ADC channel through the potential divider
arrangement.

2. Enter the program.

3. Verify the results for an different analog input.

Analog to Digital Converter:

106

ANALOG (SET
VALUE)

DIGITAL

ANALOG
(CALCULATED
VALUE)

DIGITAL(CALCULATED

VALUE)

4.9

3.7

2.9

1.78

0.02

Specimen Calculation:

Program- Analog to Digital Converter

107

Address Opcode Label Mnemonics Comments

8100 Idb ad_command, #0AH Command word select the ch.
Selection and initialize the AD
conversion

8103 Nop Wait for 8 state times for the

8104 Nop ADC status to set

8105 Check Jbs ad_result_10,3,Check | check the ADC result reg.bit 3

8108 Idb al, ad_result_lo If bit3 =0, wait

810B Idb ah, ad_result_hi If bit 3=1, ADC in progress

810E shr ax, #6 shift ax reg contents with 6
times

8111 and ax, #3ffH AND operation with 3ff

8115 Id bx, #9000H load the address to BX reg.

8119 st ax,[bx] Store the result in BX

811C Jump sjmp Jump Short Jump

Pulse width Modulator:

108

Duty Cycle

Decimal Value

Hex. Value

10%

25%

50%

75%

90%

Specimen Calculation:

109

C) PULSE WIDTH MODULATOR
AIM:

To vary the duty cycle of pulse width modulator control registers and trace the
waveform.

The 80196 features one pulse width modulated output channel. The PWM output
waveform is a variable duty cycle, which represents every 64 microseconds. Changes in duty
cycle are made by writing to the PWM control register. The PWM control register lies in the on
chip RAM address 17H. The PWM output is terminated at the pin 12 of the connector analog 1/0
P10. The PWM output shares a pin P2.5, so that these two features cannot be used at the same
time. The pin 2.5 can function as PWM or a standard port pin. The option can be selected by
setting bit 0 of the 1/O control register (called I0C1).

Address Opcode Label Mnemonics Comments
8100 Idb al,iocl iocl content to al reg.
8103 orb al #01 OR oper. al with 01
8106 stb al,iocl store al content to iocl
8109 Idb pwm control word,7F | Duty cycle value loaded into
PWM reg.
810C sjmp 810C Short Jump
RESULTS:

The above programs are loaded and the results are verified.

I/P CLK

1.5MHZ N

8253

—

1HZ

/P CLK

8251

RECEIVER —»

I/P CLK
50 MHZ

]
L]
]

Serial Port Kit 1

T*D 2

R*D 3

RTS 4

CTS 5

CONNECTOR

Serial Port Kit 2

CONTROLLER
in SERIAL
PORT

2TD

3RD

4RTS

5CTS

CONNECTOR

111

EX.NO: DATE:

SERIAL DATA TRANSMISSION- KIT TO KIT TRANSFER USING 8051
MICROCONTROLLER

AIM
To transmit the data serially from one microprocessor to another microprocessor using
8051 microcontroller Kkit.

DESCRIPTION OF HARDWARE

The microprocessor kit transmitter/receiver data serially through serial port via USART
8251. The device used for transmitter is MC 1488 and for receiver MC 1489. The kit can either
transmit or receive data kit which are linked to RS232 cable. The input clock frequency of 8251
is equal to product of rate factor and baudrate. The frequency of 8253 is divided by the count
value in the count register.

INITIALIZATION OF 8253
Calculation of counter value
Given baud rate =9600
Baudrate factor =16
Input clock frequency=9600*16
This is also the output frequency from channel 0 for8253. Count to be closed in the registor= (i/p
clk)/(o/p clk).

TRANSMITTER PROGRAM

ADDRESS | LABEL | OPCODE | MNEMONICS COMMENTS
4100 758920 MOV TMOD, #20H
4103 758D A0 | MOV TH1, #0A0H

4106 758B00 | MOV TL1, #00H

4109 7588 40 MOV TCON, #40H
410C 7598 58 MOV SCON, #58H
410F 904500 MOV DPTR,#4500H
4112 RELOAD | 7D 05 MOV R5,#05H

4114 REPEAT | EO MOVX A,@DPTR

4115 F599 MOV SBUF,A

4117 CHECK [3099FD |JNB SCON.1,CHECK
411A C299 CLR SCON.1

411C A3 INC DPTR

411D B4 3F F2 | CINE A#3FH,RELOAD
4120 DD F2 DIJNZ R5, REPEAT
4122 E4 CLARA

4123 12 00 20 LCALL 0020H

112

INPUT:

4500 -
4501 -
4502 -
4503 -
4504 -

00
11
22
33
44

RECEIVER PROGRAM

113

ADDRESS | LABEL | OPCODE MNEMONICS COMMENTS
4100 758920 MOV TMOD, #20H
4103 758D A0 MOV TH1, #0A0H
4106 75 8B 00 MOV TL1, #00H
4109 7588 40 MOV TCON, #40H
410C 7598 58 MOV SCON, #58H
410F 904500 MOV DPTR,#4500H
4112 RELOAD | 7D 05 MOV R5,#05H

4114 CHECK [3098 FD JNB SCON.0,CHECK
4115 C298 CLR SCON.0

4117 E5 99 MOV A,SBUF

411A FO MOVX@DPTR,A
411C A3 INC DPTR

411D B4 3F F2 CINE A #3FH,RELOAD
4120 DD F2 DIJNZ R5, CHECK
4122 E4 CLARA

4123 12 00 20 LCALL 0020H
OUTPUT:

4500 - 00

4501 - 11

4502 - 22

4503 - 33

4504 - 44

RESULT:

The data is transmitted serially from one kit to another Kit.

OPCODE SHEETS

114

1) 8085 MICROPROCESSOR

115

Mnemonics, Mnemonics, Mnemonics,

S.NO. Operand Opcode | S. No. Operand Opcode | S. No. Operand Opcode
1. ACI Data CE 55. DCRC 0D 100. MOQV B, D 42
2. ADC A 8F 56. DCRD 15 110. MOV B, E 43
3. ADC B 88 57. DCRE 1D 111 MOV B, H 44
4. ADC C 89 58. DCRH 25 112. MOV B, L 45
5. ADCD 8A 59. DCR L 2D 113. MOV B, M 46
6. ADCE 8B 60. DCRM 35 114, MOV C, A 4F
7. ADCH 8C 61. DCXB 0B 115. MOV C, B 48
8. ADC L 8D 62. DCXD 1B 116. MOV C, C 49
9. ADC M 8E 63. DCXH 2B 117. MOV C, D 4A
10. ADD A 87 64. DCX SP 3B 118. MOV C, E 4B
11, ADD B 80 65. DI F3 119. MOV C,H 4C
12. ADD C 81 66. El FB 120. MOV C, L 4D
13. ADD D 82 67. HLT 76 121. MOV C, M 4E
14. ADD E 83 68. IN Port-address DB 122. MOV D,A 57
15. ADDH 84 69. INR A 3C 123. MOV D, B 50
16. ADD L 85 70. INR B 04 124, MOV D, C 51
17. ADDM 86 71. INRC 0C 125. MOV D, D 52
18. ADI Data C6 72. INRD 14 126. MOV D, E 53
19. ANA A A7 73. INR E 1C 127. MOV D, H 54
20. ANA B A0 74. INRH 24 128. MOV D, L 55
21. ANAC Al 75. INR L 2C 129. MQV D, M 56
22. ANAD A2 76. INRM 34 130. MOV E, A 5F
23. ANAE A3 77. INX B 03 131 MOV E, B 58
24. ANAH A4 78. INX D 13 132. MOVE, C 59
25. ANA L A5 79. INXH 23 133. MOV E, D 5A
26. ANAM A6 80. INX SP 33 134. MOV E, E 5B
217. ANI Data E6 8l JC Label DA 135. MOV E, H 5C
28. CALL Label CD 82. JM Label FA 136. MOV E, L 5D
29. CC Label DC 83. JMP Label C3 137. MOV E, M 5E
30. CM Label FC 84. JNC Label D2 138. MOV H, A 67
31 CMA 2F 85. JNZ Label Cc2 139. MOV H, B 60
32. CMC 3F 86. JP Label F2 140. MOV H, C 61
33. CMP A BF 87. JPE Label EA 141. MOV H, D 62
34. CMPB B8 88. JPO Label E2 142. MOV H, E 63
35. CMPC B9 89. JZ Label CA 143. MOV H, H 64
36. CMPD BA 90. LDA Address 3A 144, MOV H, L 65
37. CMPE BB 91 LDAX B 0A 145. MOV H, M 66
38. CMPH BC 92. LDAX D 1A 146. MOV L, A 6F
39. CMP L BD 93. LHLD Address 2A 147. MOV L, B 68
40. CMPM BD 94. LXI B 01 148. MOV L, C 69
41, CNC Label D4 95. LXI D 11 149. MOV L, D 6A
42, CNZ Label C4 96. LXIH 21 150. MOV L, E 6B
43. CP Label F4 97. LXI SP 31 151. MOV L, H 6C
44, CPE Label EC 98. MOV A A 7F 152. MOV L, L 6D
45, CPI Data FE 99. MOV A, B 78 153. MOV L, M 6E
46. CPO Label E4 100. MOV A, C 79 154, MOV M, A 77
47. CZ Label CcC 101. MOV A, D 7A 155. MOV M, B 70
48. DAA 27 102. MOV A E 7B 156. MOV M, C 71
49. DAD B 09 103. MOV A H 7C 157. MOV M, D 72
50. DAD D 19 104. MOV A, L 7D 158. MOV M, E 73
51. DAD H 29 105. MOV A, M 7E 159. MOV M, H 74
52. DAD SP 39 106. MOV B, A 47 160. MOV M, L 75
53. DCR A 3D 107. MOV B, B 40 161. MVI A, Data 3E

116

54. DCRB 05 108. MOV B, C 41 162. MVI B, Data 06
S. No. Mnemonics, Opcode | S. No. Mnemonics, Opcode | S. No. Mnemonics, Opcode
Operand Operand Operand
163. MVI C, Data 0E 192. RET C9 219. SBI Data DE
164. MVI D, Data 16 193. RIM 20 220. SHLD Address 22
165. MVI E, Data 1E 194, RLC 07 221. SIM 30
166. MVI H, Data 26 195, RM F8 222, SPHL F9
167. MVI L, Data 2E 196. RNC DO 223. STA Address 32
168. MVI M, Data 36 197. RNZ Co 224, STAX B 02
169. NOP 00 198. RP FO 225. STAX D 12
170. ORA A B7 199. RPE ES8 226. STC 37
171 ORAB BO 200. RPO EO 2217. SUB A 97
172. ORAC Bl 209. RST 7 FF 228. SUBB 90
173. ORAD B2 210. RZ C8 229. SUBC 91
174, ORAE B3 201. RRC OF 230. SUB D 92
175. ORAH B4 202. RST 0 C7 231 SUBE 93
176. ORA L B5 203. RST 1 CF 232. SUBH 94
177. ORAM B6 204. RST 2 D7 233. SUB L 95
178. ORI Data F6 205. RST 3 DF 234. SUB M 96
179. OUT Port- D3 206. RST 4 E7 235, SUI Data D6

Address

180. PCHL E9 207. RST 5 EF 236. XCHG EB
181. POP B C1 208. RST 6 F7 237. XRA A AF
182. POP D D1 209. RST 7 FF 238. XRA B A8
183. POPH El 210. RZ C8 239. XRA C A9
184, POP PSW F1 211, SBB A oF 240. XRA D AA
185. PUSH B C5 212. SBB B 98 241. XRAE AB
186. PUSH D D5 213. SBB C 99 242, XRAH AC
187. PUSHH E5 214, SBB D 9A 243. XRA L AD
188. PUSH PSW F5 215. SBB E 9B 244, XRAM AE
189. RAL 17 216. SBBH 9C 245, XRI Data EE
190. RAR 1F 217. SBB L 9D 246. XTHL E3
191, RC D8 218. SBB M 9E

LDB
LDB
STB
STB

117

2) 8097 MICROCONTROLLER

MNEMONICS OPCODE

ADD 44
AND 40
CMP 89
JBS 3B
JNE D7
LD Al
NOP FD
NOT 02
OR 80
RET FO
SCALL 28
SHR 08
SIMP 27
ST C2
SUB 69
XOR 84
ORB 91

B1[IMMEDIATE ADDRESSING]

BO[DIRECT ADDRESSING]

C6[INDIRECT ADDRESSING]

C6[DIRECT ADDRESSING]

AD_COMMAND

AD_RESULT_LO

AD_RESULT_HI

AX
BX
BL
BH
CL
CH
LX
LL
LH

equ
equ
equ
equ
equ
equ
equ
equ

equ

50h
52h
52h
53h
53h
55h
58h
58h
5ah

02
02
03

3) 8051 MICROCONTROLLER

118

Hex Number Mnemonic Operands
Code of Bytes

(a]8] 1 NOP

01 2 AJMP code addr
0z 3 LJMP code addr
03 1 RR A

(873 1 INC A

05 2 INC data addr
06 1 INC @RO

o7 1 INC @R1

o8 1 INC RO

09 1 INC R1

oA 1 INC R2

oB 1 INC R3

ocC 1 INC R4

oD 1 INC RS

OE 1 INC R6

OoF 1 INC R7

10 3 JBC bit addr,code addr
11 2 ACALL code addr
12 3 LCALL code addr
13 1 RRC A

14 1 DEC A

15 2 DEC data addr
16 1 DEC @RO

17 1 DEC @R1

18 1 DEC RO

19 1 DEC R1

1A 1 DEC R2

1B 1 DEC R3

1C 1 DEC R4

1D 1 DEC R5

1E 1 DEC R6

1F 1 DEC R7

20 3 JB bit addr,code addr
21 2 AJMP code addr
22 RET

23 RL A

24 2 ADD A #Hdata
25 2 ADD A.data addr

119

Hex Number Mnemonic Operands
Code of Bytes

26 1 ADD AL @RO

27 1 ADD A, @R1

28 1 ADD A,RO

29 1 ADD ALCRA

2A 1 ADD AR2

2B 1 ADD AR3

2C 1 ADD A,R4

2D 1 ADD AR5

2E 1 ADD A,RB

2F 1 ADD AR7

30 3 JNB bit addr,code addr
31 2 ACALL code addr
32 1 RETI

33 1 RLC A

34 2 ADDC A #data

35 2 ADDC A.,data addr
36 1 ADDC A, @RO

37 1 ADDC A, @R1

38 1 ADDC A,RO

39 1 ADDC ALCRA

3A 1 ADDC AR2

3B 1 ADDC A,R3

3C 1 ADDC A R4

3D 1 ADDC AR5

3E 1 ADDC AR6

3F 1 ADDC AR7

40 2 JC code addr
41 2 AJMP code addr
42 2 ORL data addr,A
43 3 ORL data addr,#data
44 2 ORL A #data

45 2 ORL A.,data addr
46 1 ORL AL @RO

47 1 ORL AL @RA1

48 1 ORL ARO

49 1 ORL AR

N 1 ORL AR2

120

Hex Number Mnemonic Operands
Code of Bytes

4B 1 ORL AR3

4C 1 ORL A R4

4D 1 ORL A RS

4E 1 ORL ARG

4F 1 ORL A R7T

50 2 JNC code addr
51 2 ACALL code addr
52 2 ANL data addr, A
53 3 ANL data addr,#data
54 2 ANL A FHdata

55 2 ANL A.data addr
56 1 ANL AL @RO

57 1 ANL AL@RA1

58 1 ANL A RO

59 1 ANL AR

SA 1 ANL A R2

5B 1 ANL A R3

5C 1 ANL A R4

5D 1 ANL AR5

S5E 1 ANL ARG

5F 1 ANL A R7

60 2 JZ code addr
61 2 AJMP code addr
62 2 XRL data addr,A
63 3 XRL data addr,#data
64 2 XRL A #data

65 2 XRL A data addr
66 1 XRL AL @RO

67 1 XRL AL@R1

68 1 XRL A RO

69 1 XRL AR

6A 1 XRL A R2

6B 1 XRL A R3

6C 1 XRL A R4

6D 1 XRL AR5

G6E 1 XRL ARG

G6F 1 XRL A R7T

70 2 JNZ code addr

121

Hex Number Mnemonic Operands
Code of Bytes

71 2 ACALL code addr

T2 ORL C.bit addr

73 1 JMP @A+DPTR

74 2 MO A #Hdata

75 3 MO data addr,#data
= 2 MO @RO.#data

i 2 MO @R1.,#data

78 2 MO RO.#data

79 2 MO R1.#data

TA 2 MO R2.#data

B 2 MO R3.#Fdata

TC 2 MO R4 #data

7D 2 MO R5.#data

TE 2 MO R&.#data

7F 2 MO R7.#data

80 2 sSJMP code addr

a1 2 AJMP code addr

82 2 AMNL C.bit addr

83 1 MOwWC A.@A+PC

84 1 DI AB

85 3 MO data addr.data addr
86 2 MO data addr,@R0O
87 2 MO data addr.@R1
88 2 MO data addr.RO
89 2 MO data addr.R1
8A 2 MO data addr.R2
aB 2 MO data addr.R3
8cC 2 MO data addr.R4
aD 2 MO data addr.R5S
8E 2 MO data addr.R6&
8F 2 MO data addr,R7
S0 3 MO DPTR.#data
91 2 ACALL code addr

a2 2 MO bit addr,C

93 1 MOwWC A.@A+DPTR
9S4 2 SUBB A #Hdata

95 2 SUBB A data addr
96 1 SuUBB A @RO

122

Hex Number Mnemonic Operands

Code of Bytes

o7 1 SUEBB AL @R

a8 1 SUEBB ALRO

29 1 SUEBB ALRA1

=N 1 SUEBB ALRZ2

oB 1 SUEBB ALR3

ac 1 SUEBB ALR4

oD 1 suBeB ALRS

9E 1 suBeB ALRE

aF 1 sSuUBB ALRT

A0 2 ORL C./bit addr

A 2 AJMP code addr

A2 2 MOoY C.bit addr

A3 1 INC DPTR

A 1 MUL AB

AD reserved

AB 2 MOoY @ R0O.data addr

AT 2 MOoY @R1.data addr

AB 2 MOoY RO.data addr

A 2 MOoY R1.data addr

A 2 MOW R2.data addr

AB 2 MONW R3.data addr

AC 2 MONW R4 .data addr

AD 2 MO R5.data addr

AE 2 Mo R6.data addr

AF 2 MOoY R7 .data addr

BO 2 AMNL C./bit addr

B1 2 ACALL code addr

B2 2 CPL bit addr

B3 1 CPL C

B4 3 CJNE A Fdata.code addr
BS 3 CJNE A.data addr,code addr
B6 3 CJNE @ R0.#Fdata.code addr
BT 3 CJNE @R1.#Fdata.code addr
B8 3 CJNE RO .#data,code addr
B9 3 CJMNE R1 .#data.code addr
B.A, 3 CJNE RZ #data.,code addr
=] =) 3 CJNE R3.#data.code addr
BC 3 CJNE R4 . #data.code addr

123

Hex Number Mnemonic Operands

Code of Bytes

BD 3 CJNE R5.#data.code addr
BE 3 CJNE R&.#data.code addr
BEF 3 CJNE R7.#data.code addr
co 2 PUSH data addr

c1 2 AJMP code addr

c2 2 CLR bit addr

c3 1 CLR cC

c4 1 SWaAaP A

C5 2 XCH A.data addr

c6 1 XCH A @RO

Loy 1 »HCH A,@RA

cs8 1 »HCH ALRO

c9 1 »HCH AR

CA 1 »CH ALR2

cB 1 XCH ALR3

ccC 1 XCH ALR4

cD 1 XCH ALRS

CE 1 XCH ALRS

CF 1 XCH AVRT

Do 2 POPR data addr

D1 2 ACALL code addr

D2 2 SETE bit addr

D3 1 SETE c

D4 1 DA A

D5 3 DJMNZ data addr,code addr
D6 1 HKCHD AL@RO

D7 1 XCHD A@RA

D& 2 DJNZ RO.code addr

D9 2 DJNZ R1.code addr

DA 2 DJNZ R2.code addr

DB 2 DJMNZ R3.code addr

DC 2 DJMNZ R4.code addr

DD 2 DJMNZ R5.code addr

DE 2 DJMNZ R&.code addr

DF 2 DJMNZ R7.code addr

EO 1 MO X A @DPTR

E1 2 AJMP code addr

E2 1 MO X AL.@RO

124

Hex Number Mnemonic Operands
Code of Bytes

E3 1 MOW X A,@RA

E4 1 CLR A

ES5 2 MO A.data addr
E6& 1 MOW A, @RO
ET 1 MOoW A @R

E8 1 MOoW ARO

ES 1 MOow AR

EA 1 MOW AR2

EB 1 MO AR3

EC 1 MO AR4

ED 1 MOW AR5

EE 1 MOW ARG

EF 1 MOW ART

FO 1 MOW X @DPTR,A
F1 2 ACALL code addr
F2 1 MOWX @R0O,A

F3 1 MOW X @R1.A

F4 1 CPL A

F5 2 MOW data addr, A
F& MOow @RO.A

F7 1 MOow @R1.A

F& 1 MOW RO.A

F9 1 MOoW R1.A

FA 1 MOow R2.A

FB 1 MOow R3.A

FC 1 MO R4 A

FD 1 MO RS5.A

FE 1 MO R6. A

FF 1 MOW R7.A

	1) Mode Instruction
	2) Command
	3) Status Word
	vision.pdf
	DEPARTMENT OF ELECTRICAL ENGINEERING

